首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
This study was aimed firstly, to examine the ovaries in non-pregnant first served sows and gilts by transcutaneous ultrasonography and secondly, to evaluate the suitability for this procedure to be performed routinely on farms. Two thousand five hundred and twenty-three females on a 1250-sow unit, synchronized with Regumate (gilts only) and/or gonadotropins (sows and gilts) not detected as returned to estrus by daily boar contact prior to scanning were ultrasonographically tested for pregnancy between days 20 and 114 postinsemination (p.i.). Of 256 sows (S) and 130 gilts (G) found to be non-pregnant the ovaries were visualized in 87.1 and 80.0% of them, respectively. Ovarian findings were: corpora lutea (CL); follicles of 2-6mm (F(2-6)); peri-ovulatory ovarian structures (POS; comprising follicles of 7-8mm and corpora haemorrhagica); single cysts (SC); oligocystic ovarian degeneration (OOD) and polycystic ovarian degeneration (POD). Their incidence was: CL>F2-6>POS>POD ( P<0.05 ) in both S and G. POD and SC plus OOD were more frequently in S ( P<0.05 ). The ovarian findings were related to the intervals of regular (days 18-25 p.i. (R1), 38-46 p.i. (R2)) and irregular service returns (days 26-37 p.i. (IR1), 47-114 p.i. (IR2)). Comparison within intervals: CL tended to be more frequently with P<0.05 only at IR2 in S. Comparison among intervals (R1 to IR2): The percentage of females (1) with CL tended to increase (S and G) and (2) with F2-6 plus POS decreased significantly (S; P<0.05 ) or tendentiously (G). SC plus OOD was higher before R2, POD after IR1 (S and G; P<0.05 ). In conclusion, the results indicate a high heterogeneity of ovarian structures in non-pregnant first served sows and gilts up to day 114 after service and suggest CL as an important cause for a delayed and, rather than POD, a failed service return. The results further demonstrate that transcutaneous ultrasonography is an appropriate and recommended method for examining the ovaries on farm in female pigs with reproductive failures.  相似文献   

2.
A field study was conducted to investigate the effectiveness of a treatment with altrenogest, eCG and hCG or the GnRH-analogue D-Phe(6)-LHRH to synchronize estrus and ovulation of sows diagnosed as non-pregnant in order to reintegrate them back into a scheduled fixed-time insemination program. Sows (n=531) diagnosed as non-pregnant by ultrasonography on days 21-35 after insemination were subjected to one of three treatments: (1) 16 mg altrenogest/day/animal orally for 15 days to block follicular growth, followed by injection of 1000 IU eCG intramuscularly (i.m.) 24h after withdrawal of altrenogest to stimulate follicular growth and 500 IU hCG i.m. 78-80 h after eCG to induce ovulation; (2) similar to (1) except that 20mg altrenogest and 800 IU eCG were used and (3) similar to (2) except that 50 microg D-Phe(6)-LHRH was used to induce ovulation. Females were artificially inseminated (AI) twice at 24 and 40 h, respectively, after hCG/D-Phe(6)-LHRH. Success of treatments was checked by ultrasonography of the ovaries. Rates of conception and farrowing (CR, FR), and number of total and live born piglets (TB, LB) were recorded and compared to those of synchronized first served sows. Females had differing ovarian structures prior to treatment. Altrenogest effectively blocked follicular growth in >80% of the females irrespective of dosage, but 16 mg increased the development of polycystic ovarian degeneration. Four to 18% of the females still had corpora lutea after altrenogest. Most females ovulated either between both inseminations or thereafter (P<0.05). Females treated with D-Phe(6)-LHRH tended to ovulate earlier than those injected with hCG. The CR and FR were up to 25% lower for sows diagnosed as non-pregnant than for sows after first service (P<0.05). Among sows diagnosed as non-pregnant the CR was higher in females treated with D-Phe(6)-LHRH (P<0.05). No differences were found in regard to numbers of TB and LB. In conclusion, a treatment with 20mg altrenogest per day per animal, followed by 800 IU eCG and 50 microg the GnRH-analogue D-Phe(6)-LHRH is appropriate to synchronize estrus and ovulation of sows diagnosed as non-pregnant. Whether there might be a need to feed altrenogest for a longer interval of 18 days has to be investigated.  相似文献   

3.
Porcine epidemic diarrhea virus (PEDV) is an important pathogen that has a significant economic impact on the swine industry by imposing a high rate of mortality in suckling piglets. However, limited information on the productivity values of gilts and sows infected with PEDV is available. Here, we evaluate the productivity index in gilts and sows during the 1-year period before (19 January 2013 to 18 January 2014) and after (19 January 2014 to 18 January 2015) a PEDV outbreak from a 2000-sow breeding herd in Taiwan. The farrowing rate (FR), return rate (RR), total pigs born per litter (TB), pigs born alive per litter (BA), weaning pigs per litter (WPL), pre-weaning mortality, percentage of sows mated by 7 days after weaning, weaning to first service interval (WFSI), mated female nonproductive days (NPDs), replacement rate of sows and sow culling rate were compared using productive records. The FR (-9.6%), RR (+9.8%), TB (-1.6), BA (-1.1), WPL (-1.1), sows mated by 7 days after weaning (-6.9%), WFSI (+0.8 days), NPDs (+6.9 days) and sow culling rate (+7.2%) were significantly different between the 1-year pre-PEDV outbreak period and the post-PEDV outbreak period. Impacts of the PEDV infection on the reproductive performance were more severe in pregnant gilts than in sows. In conclusion, these findings indicate that the outbreak of PEDV caused an increase in the rate of NPDs in breeding herds.  相似文献   

4.
The present study was performed to evaluate retrospectively the influence of birth litter size, birth parity number, performance test parameters (growth rate from birth to 100kg body weight and backfat thickness at 100kg body weight) and age at first mating (AFM) of gilts on their reproductive performance as sows. Traits analysed included remating rate in gilts (RRG), litter size, weaning-to-first-service interval (WSI), remating rate in sows and farrowing rate (FR). Data were collected from 11 Swedish Landrace (L) and 8 Swedish Yorkshire (Y) nucleus herds and included 20712 farrowing records from sow parities 1-5. Sows that farrowed for the first time during 1993-1997, having complete records of performance test and AFM, were followed up to investigate their subsequent reproductive performance until their last farrowing in 1999. Analysis of variance and multiple regression were applied to continuous data. Logistic regression was applied to categorical data. The analyses were based on the same animals and the records were split into six groups of females, i.e. gilts, primiparous sows, and sows in parities 2-5, respectively. Each additional piglet in the litter in which the gilt was born was associated with an increase of her own litter size of between 0.07 and 0.1 piglets per litter (P<0.001). Gilts born from sow parity 1 had a longer WSI as primiparous sows compared with gilts born from sow parity 4 (0.3 days; P<0.05) or parity 5 (0.4 days; P<0.01). Gilts with a higher growth rate of up to 100kg body weight had a larger litter size (all parities 1-5; P<0.05), shorter WSI (all parities 1-5; P<0.05) and higher FR (parities 2 and 5; P<0.05) than gilts with a lower growth rate. Gilts with a high backfat thickness at 100kg body weight had a shorter WSI as primiparous sows (P<0.001) compared with low backfat gilts, and 0.1 piglets per litter more as second parity sows (P<0.01). A 10 day increase in AFM resulted in an increase in litter size of about 0.1 piglet for primiparous sows (P<0.001) and a decrease (P<0.05) for sow parities 4 and 5.  相似文献   

5.
The ability of peforelin (l-GnRH-III) to stimulate follicular growth, FSH release, and estrus in gilts after altrenogest treatment and in sows after weaning was investigated. In three farrow-to-wean herds, with at least 600 sows and average production performance, 216 gilts, 335 primiparous, and 1299 pluriparous sows were randomly allocated to three treatments: peforelin (M group: Maprelin), eCG (F group: Folligon), and physiological saline solution (C group). Animals were treated 48 hours after their last altrenogest treatment (gilts) or 24 hours after weaning (sows). The weaning-to-estrus interval, estrus duration, estrus rate (ER), pregnancy rate, and total born (TB), live born, and stillborn (SB) numbers were recorded and compared between treatments for the different parity groups (gilts and primiparous and pluriparous sows). Follicle sizes were measured in representative animals from each group on the occasion of their last altrenogest treatment or at weaning, and also on the occasions of their first (FS1) and second (FS2) attempted inseminations. Blood samples were taken to determine FSH concentrations at weaning and 2 hours after injection, and progesterone concentrations 10 days after the first insemination attempt. The relative change in FSH concentrations was calculated. Significant differences were found for ER within 7 days of weaning in pluriparous sows (95%, 91%, and 90% for the M, F, and C groups, respectively, P = 0.005). Gilts in the F-group had high TB numbers, and pluriparous sows in the M group had high SB numbers (TB gilts = 13.6, 15.4, and 14.9 [P = 0.02] and SB pluriparous sows = 1.8, 1.4, and 1.7 [P = 0.05] for the M, F, and C groups, respectively). The M group had the highest FS1 (for gilts) and FS2 (for pluriparous sows) values: FS1 = 5.4, 4.9, and 4.9 mm [P = 0.02] and FS2 = 6.8, 5.3, and 6.3 mm [P = 0.03] for the M, F, and C groups, respectively. There were no significant differences between the different treatments within each parity group with respect to any of the other variables. Overall, peforelin treatment had small but positive effects on the ER and follicle growth in certain parity groups but did not seem to affect litter sizes or FSH and progesterone levels in sows on the occasions of the corresponding examinations.  相似文献   

6.
Cede P  Bilkei G 《Theriogenology》2004,61(1):185-194
The present study was conducted in a large Croatian "built up unit". The objective of the study was to determine if an indoor modified eros centre (MEC) compared to indoor or outdoor group housing of gilts, influenced the onset of puberty of gilts and the reproductive performance of the evaluated females (n = 783) over four parities. The gilts were from the same nucleus herd. Gilts of same age (140-150 days of age), body condition (body condition score of 3-4) and similar genetics (four-way cross females), during the same season (January to April 1999), were randomly divided at arrival into three groups and treated as follows:MEC gilts (n = 279): These were placed into indoor MEC pens in groups of 8-10. The gilts had continuous fenceline contact to boars (one boar to two groups of gilts, boars were changed daily) and to shortly weaned oestrous sows. Gilts were regrouped and dislocated at 10-day intervals. Outdoor gilts (n = 263): These were kept in groups of 8-10 on a large pasture (80-100 m2 per group). The animals had fenceline contact to mature boar for 5-10 min daily. Control indoor gilts (n = 241): These were housed indoors in large pens in groups of 8-10. The animals had fenceline contact to mature boars for 5-10 min daily. Each outdoor group had an insulated hut with straw bedding. All gilts were fed ad libitum with the same commercial diet. Housing gilts in MEC resulted in earlier (P < 0.001) onset of estrus (MEC: 174.8 +/- 2.4 days, indoor group housing: 207.6 +/- 4.1 days, outdoor group housing: 187.4 +/- 2.1 days) and lower (P < 0.001) farrowing rate to first service (MEC: 70.97%, indoor group housing: 89.73%, outdoor group housing: 89.62%). Farrowing rate of regularly returning MEC gilts to second service was 95.00%. First total-born litter size, first liveborn litter size, first wean-to-estrus interval (WEI), percent of sows bred after first weaning, second total-born litter size, second liveborn litter size, average third and fourth total-born and liveborn litter size, number of sows having four litters, number of litters per sow, total number of pigs per sow, total number of liveborn pigs per sow showed no significant differences between the groups. More (P < 0.05) sows were culled in outdoor group. Compared to MEC and outdoor housing, indoor housed sows suffered higher (P < 0.05) percentage of anoestrus.  相似文献   

7.
The objective of the present study was to analyse the association between repeat breeding (RB) in gilts/sows and their subsequent reproductive performance as well as the impact of interactions between repeat breeding and factors like parity number, boar breed, season and mating type (MT) on subsequent reproductive performance in Swedish Landrace (L) and Swedish Yorkshire (Y) sows. Data analysed included 7040 sows (3654 L and 3386 Y), farrowing during January 1994 until December 1999 in 11 L and 8 Y nucleus herds. The study was assigned as a cohort design and the aim was to study gilts/sows from their first mating as gilts until mating after third parity. Analysis of variance was applied to continuous data and logistic regression was applied to categorical data. Percentages of litters as a result of repeat breeding in sow parities 1-3 were 6.1, 12.0 and 6.3% for L sows and 6.7, 13.1 and 7.4% for Y sows. For parity 3, the incidence of litters resulting from repeat breeding was significantly higher (P<0.001) in Y than in L sows. The proportion of irregular return to oestrus (>24 days after first mating) was higher (P<0.01) in primiparous sows than in multiparous sows (69% versus 61%). On average, litters resulting from repeat breeding were larger (P<0.001) than litters resulting from non-repeat breeding (NR) (about 0.5 piglets per litter) in both L and Y sows. For Y sows, if the previous litter was a result of repeat breeding, the subsequent reproductive cycle had 2.7% higher RR (P<0.05) and 2.4% lower FR (N.S.) compared with sows that were not repeat bred. The same trend was found in L sows (1.4% higher RR and 1.3% lower FR) but the differences were not significant. Among the sows removed from the herds, about 24% of L and 28% of Y were culled due to reproductive problems (gilts not included). In addition, a number of sows from these nucleus herds were also culled due to low breeding value and poor conformation.  相似文献   

8.
Eighty-five prepuberal, crossbred gilts received, ad libitum, a diet containing 0 or 10 ppm purified zearalenone for 30 d beginning at 145 to 193 d of age. At the end of this period all gilts were placed on the control diet and exposed daily to a mature boar for 60 d. Within 3 to 5 d of zearalenone ingestion, gilts showed marked vulval swelling and reddening, which continued for the 30-d feeding period. Thereafter symptoms slowly subsided. Zearalenone treated gilts showed first estrus significantly later than controls (P < 0.05), but the proportion of gilts showing estrus within 60 d of boar exposure was similar (P > 0.05). The length of the first estrous cycle was not affected by the ingestion of zearalenone before puberty (P > 0.05). In a second study, 65 multiparous, crossbred sows were full-fed twice daily a ration containing 0 or 10 ppm of purified zearalenone beginning 14 d before weaning. Postweaning, all sows were fed the control diet, were checked for estrus daily, and inseminated at the first postweaning estrus. Neither sows nor gilts from their litters exhibited signs of hyperestrogenism during treatment. Weaning to estrus interval was significantly extended in zearalenone treated sows (P < 0.05), but all other variables of fertility assessed were similar. These data suggest that zearalenone ingestion before puberty delays the stimulation of puberty associated with boar exposure, but does not affect subsequent cyclicity if zearalenone is removed from the ration. Similarly, zearalenone ingestion during lactation delays the return to estrus after weaning, but does not affect subsequent fertility when removed from the ration at weaning.  相似文献   

9.
The data presented here represent a retrospective analysis of information gathered while collecting data for other studies on miniature pigs. Two different breeds of miniature pigs, NIH and Sinclair, were used in this study. The NIH females were gilts, while Sinclair females included both gilts and sows. The pigs were checked twice a day for estrus and were mated at 12 and 24 h after the onset of estrus. One- and 2-cell stage embryos were collected on Day 2; while 4-cell, 8-cell, compact morula and blastocyst stage embryos were collected on Days 2.7, 3.5, 4.3 and 6.0, respectively. The percentage of recovery of these embryos was dependent upon the surgeon (P = 0.002) and the stage of development (P = 0.018). The number of ovulations was higher (P < 0.04) in the Sinclair sows (10.4 +/- 0.60) than in the Sinclair gilts (8.9 +/- 0.67) and in the NIH gilts (8.3 +/- 0.67). When the NIH gilts were divided into swine leukocyte antigen (SLA) haplotypes, it was found that SLA(dd) gilts (8.5 +/- 0.43) had more ovulations (P = 0.02) than SLA(ad) gilts (6.8 +/- 0.57). Some animals were treated with Regumate to synchronize estrus. The Sinclair gilts (7.8 +/- 0.28) and NIH gilts (7.7 +/- 0.27) took more days (P < 0.07) to show estrus than the Sinclair sows (6.3 +/- 0.58) after the removal of Regumate. Four of the animals had reproductive tract abnormalities; more specifically, a blind uterine horn or oviduct that was not patent with the other horn. All 4 were NIH gilts with the SLA(dd) haplotype.  相似文献   

10.
We determined the estrus profile (weaning-to-estrus interval (WEI), estrus duration (ED), and frequency of estrus per detection period) in 184 female swine and estimated the effect of the WEI, ED and frequency of artificial insemination (AI) on farrowing rate (FR) and litter size. Estrus detection was done at 8:30 a.m. and 5:00 p.m. The WEI was categorized as short (<100 h), medium (100-120 h) and long (>120 h). The ED was categorized as short (<60 h), medium (60-72 h) and long (>72 h). Mean lactation length was 14.6 days, mean WEI was 124.5 h and mean ED was 69 h. In each weaning group, females received either one or two AI, following a breeding schedule based on the estrus profile. In single-mated females, Al was performed 36 h after the beginning of estrus. In double-mated females, the first AI was done 24 h after the beginning of estrus and the second AI occurred 12 h later. The period of estrus detection had no effect (P > 0.05) on WEI, ED, FR, total born (TB) and live born litter size (LB). Mean FR was 82.6%, mean TB was 10.0% and mean LB was 9.2%. Mean ED was shorter (P < 0.03) for females having medium and long WEI (67.0 and 65.4 h, respectively) than for those having short WEI (72.2 h). A linear regression analysis identified a weak (R2 = 0.02) but significant negative association between ED and WEI (P = 0.05). The WEI did not influence FR (P > 0.05). Total litter size for females having short WEI (9.4) was lower (P < 0.03) than for those having long WEI (10.4). Also, LB for females having medium and long WEI (9.7-9.8) was higher (P < 0.05) than for those having short WEI (8.7). AI frequency had no effect on FR (P > 0.05). TB and LB litter size were lower (P < 0.05) for single-mated females (9.6 and 9.0, respectively) than for double-mated females (10.7 and 9.6, respectively). Double Al was associated with higher subsequent litter size. However, breeding schedules based only on estrus profile may not be precise in determining ideal breeding time, since females having short WEI had the longest ED and produced the lowest litter size.  相似文献   

11.
The aim of this work was to determine the incidence of ovarian cysts in the breeding herd and their consequences in the reproductive performance of the herd. Data from 1990 cyclic sows from two farms, with 0-12 parities, lactation length between 6 and 47 days and weaning-estrus interval between 0 and 32 days were evaluated by ultrasound examination for cyst incidence. As cyst was considered an anaechoic structure with smooth and thin walls with a diameter larger than 2 cm that remained visible for at least 5 days after estrus onset. Cyst incidence was found to be 2.4%. Sows with ovarian cysts have a greater return to estrus rate (34.0 x 7.7%, P<0.01), and cysts were associated with around 10% of regular and irregular return to estrus patterns on both farms. The adjusted farrowing rate (52.2 x 90.0%, P<0.01) and anestrual sows that were not pregnant (10.6 x 0.6%, P<0.01) were also influenced by the appearance of ovarian cysts, but they did not influence litter size (P>0.05). The incidence of cysts was not influenced by parity (P>0.05). Sows with shorter lactation had a greater incidence of cysts (P<0.05). Sows with a weaning-estrus interval shorter than 3 days had a greater incidence of ovarian cysts (P<0.05). The time of the year had no influence on the incidence of ovarian cysts (P<0.05).  相似文献   

12.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

13.
Kaneko M  Koketsu Y 《Theriogenology》2012,77(5):840-846
The primary objectives were to improve standard operating procedures for gilt development and mating, based on a comparison of practices among commercial Japanese herds with varying reproductive performance. Questionnaires were sent to 115 herds; the 96 herds (83.5%) responding were classified, on the basis of the upper and lower 25th percentiles of pigs weaned per mated female per year, into high-, intermediate- or low-performing herds. During gilt development, high-performing herds switched to a gilt developer diet at an earlier age than low-performing herds (P < 0.05). More high-performing herds performed first insemination “immediately,” with second insemination “6 to 12 h” after first estrus detection than low-performing herds (P < 0.05). However, there were no differences (P > 0.05) among productivity groups with regard to the use of nutritional flushing or percentage of AI used. In multilevel analyses (17,582 service records), gilts in herds using direct boar contact were 13.73 d younger at first mating than those in the herds using indirect boar contact (P < 0.05), but age was not related to feeding practices or the number of days of boar contact per week (P > 0.05). First-serviced gilts in the herds that performed first insemination “immediately” after first estrus detection had an 8.3 to 8.4% higher farrowing rate (FR) than those in herds that performed first insemination at “6 to 12 h” and “24 h” (P < 0.01). Reserviced gilts in the herds with first insemination “immediately” after first estrus detection had 7.5% higher FR than those in herds with first insemination at “6 to 12 h” (P < 0.05). Meanwhile, first-serviced and reserviced gilts in herds that restricted feed after insemination had 0.23 and 0.17 more pigs born alive (PBA) than gilts in the herds that did not restrict feed (P < 0.05). However, PBA was not related to time of insemination (P > 0.05). In conclusion, to improve gilt reproductive performance, we recommend stimulating gilt estrus by using direct boar contact, performing first insemination “immediately” after first estrus detection, and restricting feed intake after insemination.  相似文献   

14.
The administration of PG600 to sows at weaning induces >90% of sows to return to estrus within a week, but farrowing rate and litter size are often not improved. This study evaluated the effects of adjusted artificial insemination (AI) times based on weaning to estrus interval (WEI) and estrus to ovulation interval (EOI) following PG600. All sows were given PG600 at weaning and allotted to adjusted (ADJ, n=47) or non-adjusted (NA, n=46) mating times after the onset of estrus. Adjusted mating involved: (1) 2-3 days WEI, AI at 36 h and 48 h; (2) 4 days WEI, AI at 24h and 36 h; (3) 5 days WEI, AI at 12h and 24h; and (4) 6-7 days WEI, AI at 0 h and 12h. Mating for NA occurred at 0 h and 24h after onset of estrus. There was no effect of treatment on return to estrus (92.9% versus 92.5%) or ovulation (92.7% versus 92.5% for ADJ and NA, respectively). The proportion of first AI occurring within 24h prior to ovulation was increased (83.8% versus 50.0%) and closer to ovulation for ADJ compared to NA treatment (19.4h versus 27.3h, P<0.05). Treatment did not influence (P>0.10) the proportion of second AI occurring within 24h of ovulation (72.8% versus 56.6%) but did influence (P<0.05) the interval from second AI to ovulation for ADJ compared to NA (10.6h versus 3.3h). The ADJ treatment increased (P<0.05) the proportion of sows that received an AI within 24h before ovulation (98.8% versus 87.0%). However, treatment did not influence pregnancy (87.4%) or farrowing (79.5%) rates but the NA treatment tended to increase (P<0.10) total number of pigs born (11.8 versus 8.9). In conclusion, while AI times for ADJ appeared to occur within optimal periods, farrowing rates were not improved and litter size decreased, suggesting that two AI at 12h intervals and closer to the time of ovulation may be detrimental. Overall, these data suggest that for sows injected with PG600 at weaning and receiving two AI, breeding at 0 h and 24h after onset of estrus is recommended.  相似文献   

15.
In sows, n-3 fatty acids increase litter sizes, however, effects on gilt reproductive development have not been adequately studied. Moreover, not determined are effects of feeding n-3 fatty acids to sows on reproduction in offspring. The objective here was to determine effects of 4% dietary menhaden oil on growth and puberty in gilts farrowed by sows fed menhaden oil. Sows (n = 44) were assigned to: (1) control gestation and lactation diets, or (2) diets including menhaden oil. For primiparous sows only, total litter size and born alive were greater (P < 0.05) in females fed menhaden oil. Conversely, pigs from primiparous controls were heavier (P < 0.05) than pigs from primiparous sows fed menhaden oil (parity by diet interactions, P < 0.01). Diet did not affect (P > 0.20) other sow and litter characteristics. At weaning, 84 gilts from control- or menhaden oil sows were placed three gilts per pen and provided control diets or diets containing menhaden oil. Nursery and grow-finish feed intake and feed efficiency were similar (P > 0.21) for gilts from the different sows and weight gain was similar (P > 0.24) for gilts fed control or menhaden diets. Gilts fed menhaden oil tended to eat less in the nursery (1.18±0.08 kg v. 0.98±0.08 kg; P = 0.09) and overall (1.83±0.04 kg v. 1.72±0.04 kg; P = 0.06). Thus, overall feed to gain was greater (2.52±0.03 v. 2.33±0.03; P < 0.01) and nursery (2.12±0.04 v. 1.80±0.04; P = 0.10) and grow-finish (3.07±0.19 v. 2.58±0.19; P = 0.08) feed to gain tended to be greater, for control gilts. Age at puberty was greater (P = 0.02) for gilts from menhaden oil-fed sows (205.1±3.2 days) compared to gilts from controls (193.9±3.2 days) and tended to be greater (P = 0.09), for controls (203.5±3.2 days) compared to gilts fed menhaden oil (195.5±3.2 days). A tendency existed (P = 0.09) for greater follicular fluid in gilts fed menhaden oil, however, ovulation rate and ovarian, luteal and uterine weights were not affected by sow diet, gilt diet or the interaction (P > 0.23). Feeding gilts menhaden oil enhanced feed efficiency and hastened puberty onset. Gilts from sows consuming menhaden oil exhibited delayed puberty and retaining females from sows fed this feedstuff may be ill advised.  相似文献   

16.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

17.
This study evaluated the effects of altering dose of PG600 on estrus and ovulation responses in prepubertal gilts and weaned sows. Experiment 1 tested the effects of one (1.0x, 400IU eCG+200IU hCG, n=74), one and a half (1.5x, n=82), or two (2.0x, n=71) doses of PG600 for prepubertal gilts. Estrus (58%) and ovulation (90%) were not affected (P>0.10) by dose. Higher doses increased (P<0.01) numbers of corpora lutea (17, 24, and 25), but not (P>0.10) the proportion of gilts with cysts (26, 36, and 46% for 1.0x, 1.5x, and 2.0x, respectively). Experiment 2 tested the effects of 0x (n=30), 0.5x (n=32), 1.0x (n=29), or 1.5x (n=30) doses of PG600 in weaned sows. Dose did not influence return to estrus (90%, P>0.10). There was an effect of dose (P<0.05) on incidence of cysts (3.4, 1.8, 6.4, and 29.8%, for 0x, 0.5x, 1.0x, and 1.5x doses, respectively). The 0.5x dose increased (P<0.01) farrowing rate (83.2%) compared to 0x (72.1%) and 1.5x (58.6%), but was not different from 1.0x (76.4%). Total pigs born (10.5+/-0.8) did not differ (P>0.10) among treatments. These data suggest that increasing dose of PG600 to 1.5x for gilts increases the number of corpora lutea but does not alter the proportion expressing estrus or ovulating. Reducing dose of PG600 for weaned sows did not alter estrus or ovulation, but the 0.5x dose increased farrowing rate compared to no PG600.  相似文献   

18.
The present research was conducted with the objective of studying the pharmacological effect of small doses of naloxone on the initiation and duration of the first estrus after weaning in the sow. For this purpose, 32 multiparous sows were used. Sows were divided at random into two groups. Group 1 (n=16) was treated by i.m. injection with 2mg naloxone at 12h intervals from 3 days before until 3 days after weaning. Group 2 (n=16) served as the control group and received saline solution at the same times as treatments for group 1. First estrus after weaning occurred at 85+/-5.2 and 108.3+/-5h (P<0.05) in naloxone- and saline-treated sows. Duration of estrus was 89.6+/-3.9 and 49.6+/-3.9h (P<0.05) in naloxone-treated and control animals, respectively. It was concluded that naloxone treatment advanced the time of appearance and duration of the first estrus after weaning in sows giving further support that endogenous opioids (EOP) are modulators of sexual behavior in female pigs.  相似文献   

19.
Primiparous sows from a commercial pig farm in central Brazil were utilized to investigate the effect of post-weaning gonadotrophins (given during summer) on estrus, time of ovulation and reproductive performance over three parities. One group of sows (PG600) was treated with a combination of 400 IU equine chorionic gonadotrophin (eCG)+200 IU human chorionic gonadotrophin (hCG) (PG600) 24h after weaning (n=420), whereas the control group received saline (n=408). In a subset of sows (n=150), estrus was detected and time of ovulation was determined by transcutaneous ultrasound. Treatment with PG600 increased the percentage of primiparous sows in estrus within 10 days after weaning (94.8% versus 79.7%) and reduced the first weaning-to-estrus interval (5.3 days versus 8.0 days) relative to control sows (P<0.05). Although the duration of estrus was longer (P<0.05) in sows given PG600 (65.7 h versus 61.0 h), the interval from estrus to ovulation was not different (P>0.05) between PG600 and control sows (46.6 h versus 43.3 h). Treatment with PG600 did not affect (P>0.05) rates of return-to-estrus and farrowing over three parities, but it increased the number of total piglets born (P<0.05) in the second parity (11.2 versus 10.4), thereby minimizing the magnitude of second-litter syndrome. Culling rates from the first to the fourth parity were 26.7 and 24.5% (P>0.05) for PG600 and control sows, respectively. In conclusion, PG600 given 24 h after the first weaning reduced the weaning-to-estrus interval and increased the size of the second litter.  相似文献   

20.
Studies on the ovulation rate, prenatal survival and litter size of Chinese Meishan pigs have given widely divergent results depending on the extent of inbreeding of the animals, their original genetic diversity, the age and parity, and the conditions of management. To obtain meaningful results, it is necessary to characterize the population under study. The following report characterizes populations of Meishan and Yorkshire of a widely diverse background. First farrowing data were collected on 21 Meishan and 20 Yorkshire gilts. Meishan gilts had 12.4 fully formed piglets and Yorkshire gilts had 7.4 fully formed piglets (P < 0.01). Meishan gilts averaged 1.86 mummified fetuses per litter vs 0.05 per Yorkshire litter (P < 0.01). Yorkshire piglets averaged 1.3 kg body weight at birth vs 0.9 kg for Meishan piglets (P < 0.01). At 47 days of second gestation, 19 Meishan and 12 Yorkshire sows averaged 22.7 and 16.3 corpora lutea (CL), respectively (P < 0.01). Uterine length and number of fetuses were not different (P > 0.40) in the two breeds. Daily estrous detection of 50 Meishan and 34 Yorkshire gilts began at 60 and 120 days of age, respectively. Meishan gilts reached sexual maturity at 95 days of age, which was 105 days earlier than Yorkshire gilts (P < 0.01). Meishan gilts were in estrus nearly 1 day longer than Yorkshire gilts at first, second and third estrus (P < 0.05). No differences in cycle length between breeds were detected for the first or second estrous cycle (P > 0.60). Nineteen Meishan gilts were slaughtered at 51 days of gestation and their reproductive tracts were recovered. The mean number of dissected CL (17.0), number of fetuses (13.1), total uterine length (396 cm), spacing per fetus (29.9 cm), allantoic (124.9 ml) and amniotic (32.2 ml) volumes, crown-rump length (82.8 mm), weight (35.4 g), sex, and direction of each fetus were determined. Chinese Meishan gilts reached puberty much earlier and were in estrus longer than Yorkshire gilts and Meishan sows had more CL than Yorkshire sows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号