首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to economic needs, a process of abandonment of unfavourably situated areas and intensified cultivation on favoured areas has taken place in the alpine region. This abandonment not only means the loss of a cultural landscape based on centuries of care but also interference with an established ecological balance. We wanted to investigate the impact of land-use, such as mowing, fertilisation and irrigation and the effects of abandonment on the O-horizon type, quantity and quality. Therefore, we selected areas with different types of land use but with equivalent site conditions in the Passeier Valley (Bolzano-South Tyrol province) for investigation. The areas studied were as follows: an organically fertilised and irrigated, intensively managed hay meadow mown once a year; an organically fertilised, intensively managed hay meadow mown once a year; a lightly managed hay meadow mown every second year; a lightly managed hay meadow mown every 3–4 years; an area densely covered with dwarf shrubs abandoned 10 years ago; and a reforested area abandoned 30 years ago. These selected areas represent different intensities of land use or stages of succession. On these areas, vegetation, phytomass, litter quantity, humus type, O-horizon quantity, litter decomposition and C and N storage, were analysed in detail. Abandonment causes the percentage of coverage with grasses and herbs to decrease from 100 to 10%, while lignified species increase from 0 to 90%. This leads to growth of the phytomass pools, which in turn causes an increase in the annual litter quantity (from 117 to 525 g m−2). Significant changes in litter quality in the case of reduced use or abandonment increases the litter’s resistance to decomposition, decreasing overall decomposition. Litter quantity and quality then have a significant impact on the O-horizon quantity. This increases strongly with decreasing intensity of land use or longer times since abandonment (115–1,180 g m−2). This leads to a significant increase of C and N storage and a change in O-horizon type ranging from no definite O-horizon or mull O-horizons on regularly used areas to moder on abandoned areas.  相似文献   

2.
植物功能群在调控气候和土壤因子对蒙古高原草原群落物种丰富度和生物量影响中的作用 植物功能群组成主要受环境因素驱动,同时植物功能群组成也是影响草地生物多样性和生产力的主要因素之一。因此,理解植物功能群在调控环境因素对生态系统功能和生物多样性影响中可能发挥的作用至关重要。通过对蒙古高原草原65个样点的植物生物量和物种丰富度的调查,将157种多年生草本植物分为两种植物功能群(即禾草和杂类草)。通过随机森林模型和普通最小二乘回归,确定与植物功能群物种丰富度和地上生物量显著相关的环境因素(即干燥度、土壤总氮和pH),并利用结构方程模型探讨筛选出的环境因素与群落物种丰富度和生物量间的关系,以及植物功能群在驱动这种关系中发挥的作用。干燥度与禾草、杂类草以及整个群落的地上生物量和物种丰富度均呈显著的单峰关系。所有的物种丰富度和生物量指标均与土壤总氮和pH值显著相关。禾草在维持蒙古高原草原生态系统群落生物量中起着关键作用,并受气候因素的直接影响。而杂类草物种丰富度决定了群落总丰富度,并受到土壤因素直接的调控。因此,群落组成在调控环境因素对群落生物量和植物多样性的影响中起着关键作用。  相似文献   

3.
4.
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long‐term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well‐documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.  相似文献   

5.
Allelopathy is recognized as an important process in plant–plant interactions, but how it affects plant communities growing in competitive conditions has not been assessed. This article investigates whether the allelopathic effect of Festuca paniculata is modified by competition between target plants in subalpine grasslands. We hypothesized that plants growing in mixed stands will be more affected by allelochemicals than the same species in monoculture. At Lautaret pass (Northern French Alps), a pot experiment was designed. We used leachates from donor pots (Treatments: 1. Bare soil, 2. F. paniculata clipped, and 3. F. paniculata unclipped) to water target pots (Treatments: 1. Control (soil only), 2. Dactylis glomerata, 3. Agrostis capillaris, and 4. D. glomerata and A. capillaris). Target plants were cultivated during one growing season. The effects of leachates from donor pots and interspecific competition in target pots were evaluated by measuring the final biomass of plants. Soil fertility was controlled in all target pots by measuring NO3 ?, NH4 +, N, and C % of the soil. Effect of target treatment under bare soil : Both D. glomerata and A. capillaris grew better in monocultures than in mixture. Effect of donor treatment on monocultures : Under bare soil, D. glomerata grew better than under F. paniculata leachates. By contrast, A. capillaris did not respond to donor pot treatment. Effect of donor treatment on mixtures: However, when both species were cultivated together under F. paniculata leachates, the biomass of D. glomerata was similar to that in monoculture under bare soil. Differences in sensitivity to allelopathy reversed the impact of interspecific competition: A. capillaris facilitated D. glomerata under allelopathy, which made allelopathy of F. paniculata on D. glomerata inefficient. The complexity of overlapping mechanisms of plant–plant interactions are highlighted by this semi-natural experiment. In subalpine grasslands, allelopathy not only limits the growth of neighboring plants, but it may also modify community assembly by affecting other plant–plant interactions such as competition. This study contributes to explore the way allelopathy interacts with other plant–plant interactions in natural systems.  相似文献   

6.
7.
Anthropogenic inputs of biologically available nitrogen (N) and climate change are simultaneously altering N and soil moisture availability in terrestrial ecosystems. Yet, plant responses to concurrent changes in both N and soil moisture in non-grassland ecosystems remain poorly understood. Our objective was to investigate how rooting depth and N-fixing ability—two functional traits we expected to mediate soil moisture and N limitations—influence forb responses to N and soil moisture availability in the Rocky Mountains USA. We assessed the growth and physiological responses (i.e., chlorophyll fluorescence, transpiration rate, and floral display) of four subalpine forb species to N additions across a naturally-occurring soil moisture gradient during one growing season. Soil moisture had a stronger positive effect on growth in shallow-rooted species and N additions had a stronger positive effect on photosynthetic capacity in species without N-fixing abilities. Transpiration rates were not consistent with soil moisture limitations expected for shallow-rooted species, and soil moisture and N had a neutral or negative influence on maximum floral displays across species. Nitrogen and soil moisture appeared to each limit separate response variables in some cases and we did not observe any N?×?soil moisture interactions. These findings suggest that shallow-rooted species may be more vulnerable to increased drought severity and that increased N availability may disproportionately benefit species without N-fixing abilities. However, mixed support for our hypotheses suggests that environmental conditions and functional traits not evaluated here likely influence subalpine plant responses to soil moisture and N availability.  相似文献   

8.
9.
10.
The effects of grazing exclusion on species diversity and functional diversity were analyzed along an elevation gradient from the subalpine (1960 m a.s.l.) to the lower and upper alpine zone (2275 m–2650 m a.s.l.) in the Austrian Central Alps for 15 years. Nine sites were chosen, including grasslands at different elevations, a bog and a glacier foreland site at the lower alpine zone and a snowbed at the upper alpine zone. Data were acquired by frequency counts in 1 m2 permanent plots inside each fenced area (three plots per site) and outside in grazed areas (three plots). Diversity indices and functional diversity were analyzed by means of generalized linear mixed models (GLMMs). Exclosure, duration of exclusion and exclosure*years (interaction effect) were defined as predictor variables. Multivariate ordination techniques were used to (i) determine species responses to grazing exclusion (pRDA, partial redundancy analysis) and (ii) to create a distance matrix representing the changes between exclosures and control plots per year (NMDS, non-metric multidimensional scaling). At the subalpine grassland, first differences between exclosure and control plots occurred already only after three years, at the upper alpine zone after four and five years. Contrary to our expectation, dwarf shrubs did not increase within the exclosures of the subalpine grassland. Instead, mainly the tall forb Geranium sylvaticum increased. Species richness significantly decreased at the exclosures of the subalpine zone, the snowbed and at one upper alpine grassland sites. The communities of the glacier foreland and the bog were hardly affected by grazing exclusion.We conclude that plant species and communities react individually depending on elevation and grazing animals. Grazing exclusion studies at high elevations should definitely be carried out in the long-term.  相似文献   

11.
Grasslands are recognized as biodiversity hotspots in Europe. However, protection and management of these habitats are currently constrained by a limited understanding of what determines local grassland plant diversity patterns. Here, we combined vegetation records (8,639 inventory plots) from 258 semi-natural grasslands with fine-resolution topographic data based on light detection and ranging technology to investigate the importance of topography—particularly topographically controlled soil moisture—for local and regional grassland plant diversity patterns across a 43,000 km2 lowland region (Denmark). Specifically, we examined the relationships between five vegetation measures representing species composition and richness as well as functional composition (Ellenberg indicator values) and four functional topographic factors representing topographic wetness, potential solar radiation, heat balance and wind exposure. Topography emerged as an important determinant of diversity patterns in both wet and dry grasslands throughout the study region, with topographic wetness being the strongest correlate of the main local (within-site) and regional (among-sites) gradients in species composition and species’ average preferences for soil moisture. Accordingly, topography plays an important role in shaping grassland plant diversity patterns both locally and regionally throughout this lowland European region, with this role mainly driven by topographically controlled soil moisture. These findings suggest hydrology to be important to consider in the planning and management of European grasslands.  相似文献   

12.
Morris  Kendalynn A.  Saetre  Peter  Norton  Urszula  Stark  John M. 《Biogeochemistry》2022,157(2):215-226
Biogeochemistry - Salinization of freshwater ecosystems impacts carbon cycling, a particular concern for coastal wetlands, which are important agents of carbon sequestration. Previous experimental...  相似文献   

13.
Saltmarshes are recognised worldwide to be among the most complex ecosystems, where several environmental factors concur to sustain their fragile functioning. Among them, soil–plant interactions are pivotal but often overlooked. The aim of this work was to use a structural equation modelling (SEM) approach to get new insight into soil–plant interactions, focusing on the effect of plant traits and abundance on soil, and test the effect of soil and/or plants on the entire community, monitoring changes in plant richness. The target halophytes Limonium narbonense and Sarcocornia fruticosa were sampled in the Marano and Grado lagoon (northern Adriatic Sea). Basal leaves of L. narbonense and green shoots of S. fruticosa were used to estimate plant growth, while the abundance of both species was used as a proxy of species competition. SEM was applied to test relationships between predictors and response variables in a single causal network. The flooding period (hydroperiod) negatively affected plant growth and soil properties, whereas plants decreased the intensity of soil reduction. Flooding did not directly affect species abundance or diversity, whose changes were instead driven by plant traits. The direct relationships between plant traits and species richness highlighted that species competition could be even more important than environmental stresses in defining plant diversity and zonation.  相似文献   

14.
Despite increasing evidence on the importance of species functional characteristics for ecosystem processes, two major hypotheses suggest different mechanisms: the ‘mass ratio hypothesis’ assumes that functional traits of the dominant species determine ecosystem processes, while the ‘complementarity hypothesis’ predicts that resource niches may be used more completely when a community is functionally more diverse. Here, we present a method which uses two different groups of biotic predictor variables being (1) abundance‐weighted mean (=aggregated) trait values and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to test the competing hypotheses on biodiversity–ecosystem functioning relationships after accounting for co‐varying abiotic factors. We applied this method to data recorded on biodiversity–biomass relationships and environmental variables in 35 semi‐natural temperate grasslands and used a literature‐based matrix of fourteen plant functional traits to assess the explanatory power of models including different sets of predictor variables. Aboveground community biomass did not correlate with species richness. Abiotic factors, in particular soil nitrogen concentration, explained about 50% of variability in aboveground biomass. The best model incorporating functional trait diversity explained only about 30%, while the best model based on aggregated trait values explained about 54% of variability in aboveground biomass. The inclusion of all predictor variable groups in a combined model increased the predictive power to about 75%. This model comprised soil nitrogen concentration as abiotic factor, aggregated traits being indicative for species competitive dominance (rooting depth, leaf distribution, specific leaf area, perennial life cycle) and functional trait diversity in vegetative plant height, leaf area and life cycle. Our study strongly suggests that abiotic factors, trait values of the dominant species and functional trait diversity in combination may best explain differences in aboveground community biomass in natural ecosystems and that their isolated consideration may be misleading.  相似文献   

15.
1. In order to investigate the factors influencing the establishment of seedlings in permanent grassland, the influence of soil moisture and nitrogen fertilization on competition between established plants of Lolium perenne and seedlings of Phleum pratense or Trifolium pratense was studied in two experiments under greenhouse conditions using the 'split-box'-technique.
2. There was no difference in the production of plant dry matter of P. pratense or T. pratense between 30% volumetric soil water content (−0·005 MPa) and 22% (−0·04 MPa), but 15% soil moisture (−0·33 MPa) reduced plant growth. L. perenne yields were linearly reduced by reduced soil moisture content.
3. Shoot competition from L. perenne reduced the plant dry matter yield of P. pratense and T. pratense more than did root competition in these experiments. When shoot competition was present, differences between moisture contents were not detected, indicating that light was probably the limiting resource under such conditions. No significant interaction between root competition and soil moisture was observed for plant weight.
4. Root competition was not prevented even though sufficient water and nitrogen were supplied. This indicated either that some other growth factor was limiting or the plants competed for resources at the root hair level even though sufficient resources were supplied at the pot or field scale. Therefore, in the situation of direct drilling of species during grassland renovation, it may be difficult to alleviate competition by adequate provision of water and nitrogen.  相似文献   

16.
Plant feedbacks increase the temporal heterogeneity of soil moisture   总被引:3,自引:0,他引:3  
Plant feedbacks on resource levels are well-known, but feedbacks on resource variability have received little attention. Semi-arid grasslands have greater temporal heterogeneity of rainfall than mesic forests, leading to the possibility that grasses further enhance this variability as a mechanism for excluding woody plants originating in habitats with less heterogeneity. Here we test the hypothesis that grasses create greater levels of temporal heterogeneity of soil resources than do woody plants. We used monocultures of five replicate species of both growth forms. Daily soil moisture measurements taken 10 and 30 cm beneath monocultures over a growing season showed that temporal heterogeneity was significantly greater under grasses than under woody plants. This occurred during a dry period when plants are most likely to compete for moisture. Differences in temporal heterogeneity between growth forms were related to differences in their abilities to reduce soil moisture: during the dry period, the net effect of vegetation on moisture 10 cm deep was greatest under grasses. Although the rate of change of soil moisture was higher under grasses, the growth forms exploited different depths of soil moisture: soils 10 cm deep were driest under grasses, but soils 30 cm deep were driest under woody species. In summary, grasses increased within-season resource variability in a habitat already characterized by high among-year variability.  相似文献   

17.
Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and temperature. Net CH4 fluxes were measured with vented closed flux chambers at two sites with low N input on sandy soils in the Netherlands: (i) Wolfheze, a heather grassland, and (ii) Bovenbuurtse Weilanden, a grassland which is mown twice a year. Spatial variability of net CH4 fluxes was analysed using geostatistics. In incubation experiments, the effects of soil moisture content and temperature on CH4 uptake capacity were assessed. Temporal variability of net CH4 fluxes at Wolfheze was related to differences in soil temperature (r2 of 0.57) and soil moisture content (r2 of 0.73). Atmospheric CH4 uptake was highest at high soil temperatures and intermediate soil moisture contents. Spatial variability of net CH4 fluxes was high, both at Wolfheze and at Bovenbuurtse Weilanden. Incubation experiments showed that, at soil moisture contents lower than 5% (w/w), CH4 uptake was completely inhibited, probably due to physiological water stress of methanotrophs. At soil moisture contents higher than 50% (w/w), CH4 uptake was greatly reduced, probably due to the slow down of diffusive CH4 and O2 transport in the soil, which may have resulted in reduced CH4 oxidation and possibly some CH4 production. Optimum soil moisture contents for CH4 uptake were in the range of 20 – 35% (w/w), as prevailing in the field. The sensitivity of CH4 uptake to soil moisture content may result in short-term variability of net atmospheric CH4 uptake in response to precipitation and evapotranspiration, as well as in long-term variability due to changing precipitation patterns as a result of climate change.  相似文献   

18.
黄土丘陵区沙打旺草地土壤水分过耗与恢复   总被引:11,自引:3,他引:11  
程积民  万惠娥  王静  雍绍萍 《生态学报》2004,24(12):2979-2983
研究了黄土丘陵区沙打旺 (Astragalusadsurgens)草地土壤水分的动态规律和恢复过程及人为调控土壤水分的效果。结果表明 :沙打旺在该区生长年限为 6~ 7a,生物量形成的高峰期在第 3~ 4年 ,之后土壤水分大量亏缺 ,生物量逐年下降 ,第 6年生物量和水分均下降到最低点。同时土壤水分的消耗深度与根系的分布相一致 ,土壤干层主要集中在根系分布的密集区 0 .3~0 .8m。随着沙打旺生长年限的延长及根系的下扎 ,土壤干层逐渐加深 ,3~ 6年生沙打旺草地土壤干层平均厚度为 2 .3m;土壤水分要自然恢复到种植前的含水量需要 6~ 7a;通过水平阶和水平沟整地进行人工调控 ,土壤水分比自然恢复可提前 2~ 3a,一般需要 4~ 5 a的时间即可恢复正常  相似文献   

19.
Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520–3,100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g. the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.  相似文献   

20.
In grassland ecosystems, most of the carbon (C) occurs below-ground. Understanding changes in soil fluxes induced by elevated atmospheric CO2 is critical for balancing the global C budget and for managing grassland ecosystems sustainably. In this review, we use the results of short-term (1–2 years) studies of below-ground processes in grassland communities under elevated CO2 to assess future prospects for longer-term increases in soil C storage.
Results are broadly consistent with those from other plant communities and include: increases in below-ground net primary productivity and an increase in soil C cycling rate, changes in soil faunal community, and generally no increase in soil C storage. Based on other experimental data, future C storage could be favoured in soils of moderate nutrient status, moderate-to-high clay content, and low (or moderateIy high) soil moisture status. Some support for these suggestions is provided by preliminary results from direct measurements of soil C concentrations near a New Zealand natural CO2-venting spring, and by simulations of future changes in grassland soils under the combined effects of CO2 fertilization and regional climate change.
Early detection of any increase in soil C storage appears unlikely in complex grassland communities because of (a) the difficulty of separating an elevated CO2 effect from the effects of soil factors including moisture status, (b) the high spatial variability of soil C and (c) the effects of global warming. Several research imperatives are identified for reducing the uncertainties in the effects of elevated atmospheric CO2 on soil C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号