首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spawning behaviour of Atlantic bluefin tuna (Thunnus thynnus) was investigated using electronic satellite tags deployed in the western Mediterranean spawning ground, around the Balearic Islands (years 2009-2011). All the fish were tagged underwater and released within schools. In general, the fish tagged in the same year/school displayed common migratory trends. Following extended residency around the Balearic Islands, most tagged tuna crossed the Strait of Gibraltar heading for the North Atlantic. Discrepancies between the migratory tracks reconstructed from this and previous electronic tagging studies suggest that the bluefin tuna Mediterranean population may comprise distinct units exhibiting differing migratory behaviours. The diving behaviour varied between oceanic regions throughout the migratory pathways, the shallowest distribution taking place in the spawning ground and the deepest at the Strait of Gibraltar. A unique diving pattern was found on the majority of nights while the fish stayed at the spawning ground; it consisted of frequent and brief oscillatory movements up and down through the mixed layer, resulting in thermal profiles characterized by oscillations about the thermocline. Such a pattern is believed to reflect recent courtship and spawning activity. Reproductive parameters inferred from the analysis of vertical profiles are consistent with those estimated in previous studies based on biological samples.  相似文献   

2.
Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18-19 degrees C. Pre-feeding fH typically ranged from 20 to 50 beats min(-1). Each feeding bout (meal sizes 2-7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min(-1)), and a decrease in TV from approximately 20 to 18 degrees C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna.  相似文献   

3.
Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20 degrees C. Oxygen consumption (Mo2) of bluefin (7.1-9.4 kg) ranged from 235+/-38 mg kg(-1) h(-1) at 0.85 body length (BL) s(-1) to 498+/-55 mg kg(-1) h(-1) at 1.80 BL s(-1). Minimal metabolic rates of swimming bluefin were 222+/-24 mg O(2) kg(-1) h(-1) at speeds of 0.75 to 1.0 BL s(-1). Mo2 of T. albacares (3.7-7.4 kg) ranged from 164+/-18 mg kg(-1) h(-1) at 0.65 BL s(-1) to 405+/-105 mg kg(-1) h(-1) at 1.8 BL s(-1). Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher M dot o2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species.  相似文献   

4.
The diets of 1219 southern bluefin tuna, Thunnus maccoyii, from inshore (shelf) and offshore (oceanic) waters off eastern Tasmania were examined between 1992 and 1994. Immature fish (< 155 cm fork length) made up 88% of those examined. In all, 92 prey taxa were identified. Inshore, the main prey were fish (Trachurus declivis and Emmelichthys nitidus) and juvenile squid (Nototodarus gouldi). Offshore, the diversity was greater, reflecting the diversity of micronekton in these waters. Interestingly, macrozooplankton prey (e.g. Phronima sedentaria) were prevalent in tuna > 150 cm. The offshore tuna, when in subantarctic waters, ate relatively more squid than when in the East Australia Current. In the latter, fish and crustacea were more important, although there were variations between years. No relationship was found between either prey type or size with size of tuna. Feeding was significantly higher in the morning than at other times of the day. The mean weight of prey was significantly higher in inshore-caught tuna than in those caught offshore. We estimated that the mean daily ration of southern bluefin tuna off eastern Tasmania was 0.97% of wet body weight day−1. However, the daily ration of inshore-caught tuna was ∼ 3 times higher (2.7%) than for tuna caught offshore (0.8%) indicating that feeding conditions on the shelf were better than those offshore. Our results indicate that the inshore waters of eastern Tasmania are an important feeding area for, at least, immature southern bluefin tuna. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Tunas show a wide variety of life history strategies, spatial distributions and migratory behaviors, yet they share a common trait of spawning only in tropical and sub-tropical regions. The warm-water tuna species generally show significant overlap between spawning and feeding grounds, and longer spawning seasons of several months to near year-round. In contrast, the cool-water bluefin tunas migrate long distances between feeding and spawning grounds, and may spawn over periods as short as 2 months. Here, we examine the spatial distributions of tuna larvae in the world’s oceans, and examine interspecific differences in the light of adult behaviors and larval ecology. We discuss the links between larval tuna and their oceanographic environments and relate these to current knowledge of larval growth, feeding and trophodynamics, with a focus on the better-studied bluefin tunas. We show that larval tunas have moderate to fast growth rates and selective feeding habits, and thus appear to be adapted for survival in warm, oligotrophic seas. We also examine the challenges of sustainably managing species which migrate across multiple management boundaries to reach spatio-temporally restricted spawning grounds and discuss the previous and future anthropogenic impacts on tuna spawning areas.  相似文献   

6.
The habitat and movements of a Pacific bluefin tuna were investigated by reanalyzing archival tag data with sea surface temperature data. During its trans-Pacific migration to the eastern Pacific, the fish took a direct path and primarily utilized waters, in the Subarctic Frontal Zone (SFZ). Mean ambient temperature during the trans-Pacific migration was 14.5 ± 2.9 (°C ± SD), which is significantly colder than the waters typically inhabited by bluefin tuna in their primary feeding grounds in the western and eastern Pacific (17.6 ± 2.1). The fish moved rapidly through the colder water, and the heat produced during swimming and the thermoconservation ability of bluefin tuna likely enabled it to migrate through the cold waters of the SFZ.  相似文献   

7.
We used 320 young-of-the-year (YOY) specimens of the highly migratory and overfished Atlantic bluefin tuna, Thunnus thynnus, Linnaeus 1758, to evaluate the hypothesis that Atlantic bluefin tuna comprises 2 stocks with spawning grounds in the Gulf of Mexico and in the Mediterranean Sea. Significant genetic differentiation at 8 nuclear microsatellite loci (F(ST) = 0.0059, P = 0.0005) and at the mitochondrial control region (Phi(ST) = 0.0129, P = 0.0139) was detected among YOY Atlantic bluefin tuna captured on spawning grounds in the Gulf of Mexico (n = 40) versus the western (n = 255) and eastern (n = 25) basins of the Mediterranean Sea. The genetic divergence among spawning populations, combined with the extensive trans-Atlantic movements reported for juvenile and adult Atlantic bluefin tuna, indicates a high degree of spawning site fidelity. Recognition of genetically distinct populations necessitates independent management of Atlantic bluefin tuna on spawning grounds and warrants evaluation of the level of mixing of populations on feeding grounds. The genetic pattern might not have been detected unless juvenile specimens or actively spawning adults had been sampled.  相似文献   

8.
We analyzed the movements of Atlantic tuna (Thunnus thynnus L.) in the Mediterranean Sea using data from 2 archival tags and 37 pop-up satellite archival tags (PAT). Bluefin tuna ranging in size from 12 to 248 kg were tagged on board recreational boats in the western Mediterranean and the Adriatic Sea between May and September during two different periods (2000 to 2001 and 2008 to 2012). Although tuna migrations between the Mediterranean Sea and the Atlantic Ocean have been well reported, our results indicate that part of the bluefin tuna population remains in the Mediterranean basin for much of the year, revealing a more complex population structure. In this study we demonstrate links between the western Mediterranean, the Adriatic and the Gulf of Sidra (Libya) using over 4336 recorded days of location and behavior data from tagged bluefin tuna with a maximum track length of 394 days. We described the oceanographic preferences and horizontal behaviors during the spawning season for 4 adult bluefin tuna. We also analyzed the time series data that reveals the vertical behavior of one pop-up satellite tag recovered, which was attached to a 43.9 kg tuna. This fish displayed a unique diving pattern within 16 days of the spawning season, suggesting a use of the thermocline as a thermoregulatory mechanism compatible with spawning. The results obtained hereby confirm that the Mediterranean is clearly an important habitat for this species, not only as spawning ground, but also as an overwintering foraging ground.  相似文献   

9.
RNA/DNA ratio is a useful and reliable indicator of the nutritional status of fish larvae and juveniles. In order to assess the nutritional status of field-caught larval Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel), starvation experiments of hatchery-reared larvae were conducted and changes in the RNA/DNA ratio of fed and starved larvae were analyzed. Starvation experiments were conducted every 3 days after first feeding. The survival rate of Pacific bluefin tuna larvae ranged 10-50% after 1 day of starved conditions and growth retardation was observed immediately. These results suggest that Pacific bluefin tuna larvae have a very low tolerance to starvation. The RNA/DNA ratios of fed larvae were approximately 2.0-4.0. On the other hand, the value of starved larvae significantly decreased to 1.0-3.0. The nutritional status of 3 cohorts of field-caught tuna larvae collected in the northwestern Pacific Ocean was examined based on the value of the RNA/DNA ratio of the 1 day starved larvae. 4.35-25.77% of the cohorts were regarded as the “starving condition”, which was negatively correlated to the ambient prey densities. These findings suggest that the nutritional condition of larval Pacific bluefin tuna was influenced by the ambient prey density, and starvation itself and starvation-induced predation could greatly contribute to mortality in the larval period of Pacific bluefin tuna.  相似文献   

10.
Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator‐prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net‐haul in 9–11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.  相似文献   

11.
Tunas have an extraordinary physiology including elevated metabolic rates and high cardiac performance. In some species, retention of metabolic heat warms the slow oxidative swimming muscles and visceral tissues. In all tunas, the heart functions at ambient temperature. Enhanced rates of calcium transport in tuna myocytes are associated with increased expression of proteins involved in the contraction-relaxation cycle. The cardiac SR Ca2+-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling. Measurements of oxalate-supported Ca2+-uptake in atrial SR vesicles isolated from four species of tunas indicate that bluefin have at least two fold higher Ca2+-uptake than all other tunas examined between 5 and 30 degrees C. The highest atrial Ca2+-uptake was measured in bluefin tuna at 30 degrees C (23.32+/-1.58 nmol Ca2+/mg/min). Differences among tunas in the temperature dependency of Ca2+-uptake were similar for ATP hydrolysis. Western blot analysis revealed a significant increase in SERCA2 content associated with higher Ca2+ uptake rates in the atrial tissues of bluefin tuna and similar RyR expression across species. We propose that the expression of EC coupling proteins in cardiac myocytes, and the higher rates of SERCA2 activity are an important evolutionary step for the maintenance of higher heart rates and endothermy in bluefin tuna.  相似文献   

12.
The ovarian mass and gonadosomatic index (IG) of bluefin tuna Thunnus thynnus , caught in the Strait of Gibraltar (Barbate) during migration to Mediterranean spawning grounds, were several times lower than those found in bluefin tuna from Mediterranean spawning grounds (Balearic Islands). Some of the bluefin tuna from Barbate (8.3%) were classified as immature (the most advanced oocytes present in the ovaries were early vitellogenic), and the majority (the remaining 91.6%) as non-spawning mature; the ovary contained late vitellogenic oocytes, but there was no sign of spawning activity. Stereological estimation indicated that the ovaries of spawning bluefin tuna from the Balearic Islands contained five-fold more highly yolked oocytes than bluefin tuna from Barbate. When breeding bluefin tuna cross the Strait of Gibraltar the gonad is at an incipient stage of maturation. The average batch fecundity estimated from stereological quantification of stage 4 (migratory-nucleus) oocytes in the specimens collected from Balearic was 92.8 oocytes g-1'of body mass, and the spawning frequency in this area was calculated to be 1.2 days. In specimens from Barbate a relative batch fecundity of 96.3 oocytes g -1 was estimated using stage 3 (late vitellogenic) oocyte counts.  相似文献   

13.
1. We studied feeding frequency in free-ranging grey seals using stomach temperature telemetry to test if previously reported sex differences in the diving, movement and diet were reflected in the temporal pattern of foraging success. 2. Data were retrieved from 21 of 32 grey seals from 1999 to 2001, totalling 343 days and 555 feeding events, with individual record length varying from 2 to 40 days (mean: 16.33 +/- 2.67 days/seal). 3. Seals fed on 57.8 +/- 6.46% of days sampled and had an average of 1.7 +/- 0.26 meals per day, but individual variability was apparent in the temporal distribution of feeding as evidenced by high coefficients of variation (coefficient of variation = 69.0%). 4. Bout analysis of non-feeding intervals of six grey seals suggests that feeding intervals of individuals were varied and probably reflect differences in prey availability. Grey seals tended to have many single feeding events with long periods separating each event, as would be expected for a large carnivore with a batch-reactor digestive system. 5. We found significant sex differences in the temporal distribution of feeding. The number of feeding events per day was greater in males (2.2 +/- 0.4 vs. 1.0 +/- 0.2), as was time associated with feeding per day (56.6 +/- 5.8 min vs. 43.9 +/- 9.4 min). 6. The number of feeding events varied with time of day with the least number occurring during dawn. Feeding event size differed significantly by time of day, with greater meal sizes during the dawn and the smallest meals during the night. 7. The length of time between meals increased with the size of the previous meal, and was significantly less in males (541.4 +/- 63.5 min) than in females (1092.6 +/- 169.9 min). 8. These results provide new insight into the basis of sex differences in diving and diet in this large size-dimorphic marine predator.  相似文献   

14.
Routine metabolic rate (RMR) was measured in fasting southern bluefin tuna, Thunnus maccoyii, the largest tuna species studied so far (body mass=19.6 kg (+/-1.9 SE)). Mean mass-specific RMR was 460 mg kg(-1) h(-1) (+/-34.9) at a mean water temperature of 19 degrees C. When evaluated southern bluefin tuna standard metabolic rate (SMR) is added to published values of other tuna species, there is a strong allometeric relationship with body mass (423 M(0.86), R(2)=0.97). This demonstrates that tuna interspecific SMR scale with respect to body mass similar to that of other active teleosts, but is approximately 4-fold higher. However, RMR (not SMR) is most appropriate in ram-ventilating species that are physiologically unable to achieve complete rest. Respiration was measured in a large (250,000 l) flexible polypropylene respirometer (mesocosm respirometer) that was deployed within a marine-farm sea cage for 29 days. Fasted fish were maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 (+/-0.004) mg l(-1) h(-1). Fish showed no obvious signs of stress. They swam at 1.1 (+/-0.1) fork lengths per second and several fed within the respirometer immediately after measurements.  相似文献   

15.
Routine metabolic rate (RMR) was measured in fasting southern bluefin tuna, Thunnus maccoyii, the largest tuna species studied so far (body mass=19.6 kg (+/-1.9 SE)). Mean mass-specific RMR was 460 mg kg(-1) h(-1) (+/-34.9) at a mean water temperature of 19 degrees C. When evaluated southern bluefin tuna standard metabolic rate (SMR) is added to published values of other tuna species, there is a strong allometeric relationship with body mass (423 M(0.86), R(2)=0.97). This demonstrates that tuna interspecific SMR scale with respect to body mass similar to that of other active teleosts, but is approximately 4-fold higher. However, RMR (not SMR) is most appropriate in ram-ventilating species that are physiologically unable to achieve complete rest. Respiration was measured in a large (250,000 l) flexible polypropylene respirometer (mesocosm respirometer) that was deployed within a marine-farm sea cage for 29 days. Fasted fish were maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 (+/-0.004) mg l(-1) h(-1). Fish showed no obvious signs of stress. They swam at 1.1 (+/-0.1) fork lengths per second and several fed within the respirometer immediately after measurements.  相似文献   

16.
In an attempt to document the migratory pathways and the environmental conditions encountered by American eels during their oceanic migration to the Sargasso Sea, we tagged eight silver eels with miniature satellite pop-up tags during their migration from the St. Lawrence River in Québec, Canada. Surprisingly, of the seven tags that successfully transmitted archived data, six were ingested by warm-gutted predators, as observed by a sudden increase in water temperature. Gut temperatures were in the range of 20 to 25°C—too cold for marine mammals but within the range of endothermic fish. In order to identify the eel predators, we compared their vertical migratory behavior with those of satellite-tagged porbeagle shark and bluefin tuna, the only endothermic fishes occurring non-marginally in the Gulf of St. Lawrence. We accurately distinguished between tuna and shark by using the behavioral criteria generated by comparing the diving behavior of these two species with those of our unknown predators. Depth profile characteristics of most eel predators more closely resembled those of sharks than those of tuna. During the first days following tagging, all eels remained in surface waters and did not exhibit diel vertical migrations. Three eels were eaten at this time. Two eels exhibited inverse diel vertical migrations (at surface during the day) during several days prior to predation. Four eels were eaten during daytime, whereas the two night-predation events occurred at full moon. Although tagging itself may contribute to increasing the eel''s susceptibility to predation, we discuss evidence suggesting that predation of silver-stage American eels by porbeagle sharks may represent a significant source of mortality inside the Gulf of St. Lawrence and raises the possibility that eels may represent a reliable, predictable food resource for porbeagle sharks.  相似文献   

17.
Direct assessment of the abundance of highly migratory pelagic species, such as tuna, is rarely available and most indices are based on catch information. We estimate the seasonal abundance of North Atlantic bluefin tuna, Thunnus thynnus, in the Gulf of Maine (GOM) from a 3-year aerial survey conducted with commercial spotter pilots, while also utilizing findings from analyses of tracking and tagging data. We apply statistical correction and calibration to seasonal abundance estimates accounting for measured changes in horizontal and vertical movement behaviour, size, shape and aggregation of bluefin tuna schools. Our approach relies on ecological knowledge of bluefin tuna to extrapolate survey observations across areas not sampled by correcting survey abundance estimates based on range of movement search pattern and depth preference. We demonstrate how separate findings obtained through the analysis of data collected across different spatial and temporal scales can be integrated to correct and calibrate estimates of population abundance. We obtain fitted estimates of seasonal abundance of bluefin tuna in the GOM during 1994–1996 in the range of 45,000–51,000 individuals. If tuna behaviour is not accounted for, we estimate that the base or residual survey precision would be 4–7% determined from analysis of recent spotter survey data in the study region. We estimate the precision in estimating seasonal abundance accounting for tuna behaviour to lie within a range of 1,301–3,302%. Under hypothetical future improvements in survey design that achieve a precision of 20% in transect length and placement, we calculate net-precision to lie within a range of 82–93%. This calculation assumes reducible uncertainty in school size estimation and irreducible uncertainty in movement and school-aggregation behaviour. We infer that survey precision could be further reduced by 43–32% to attain 10–50% in which a 3–8 years adaptive survey design may reliably detect a seasonal abundance trend.  相似文献   

18.
The lucrative and highly migratory Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758; Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.  相似文献   

19.
C. H. Wang    Y. T. Lin    J. C. Shiao    C. F. You    W. N. Tzeng 《Journal of fish biology》2009,75(6):1173-1193
The elements Na, Mg, Mn, Ca, Sr and Ba in otoliths of southern bluefin tuna Thunnus maccoyii , collected from their feeding ground in the central Indian Ocean and spawning ground between southern Java and north-western Australia were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and compared among sampling locations and developmental stages. The Na, Mg and Mn to Ca concentration ratios were significantly higher at the larval stage than at the adult stage, and the ratio reached a peak at the first inflection point of the otolith, mean ± s.d. 43·3 ± 4·9 days after hatching and decreased sharply to a low level thereafter. The temporal change of the elements:Ca ratios in the first inflection point corresponded to the life stage transition from larva to juvenile, indicating that the uptake rate of elements from ambient waters was significantly influenced by the ontogenetic change in the fish. The elemental composition at the otolith edge differed significantly in sub-adults on the feeding grounds and adults on the spawning grounds. Thus, the otolith elemental composition can be used as a biological tracer to study the time of the ontogenetic shift and to reconstruct the past migratory environmental history of T. maccoyii . In addition, the elemental composition of the otolith core of the adult was similar between feeding and spawning grounds, indicating that the fish in the Indian Ocean had the same larval origin, which is consistent with the single spawning population hypothesis.  相似文献   

20.
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca(2+) delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca(2+) channel current (I(Ca)) to test the hypothesis that Ca(2+) influx would be large and have faster kinetics in cardiomyocytes from Pacific bluefin tuna (Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel (Scombe japonicus). In accordance with this hypothesis, I(Ca) in atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 +/- 0.2 pA/pF and 25.9 +/- 1.6 ms, respectively) than those from mackerel (-2.7 +/- 0.5 pA/pF and 32.3 +/- 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts. These results indicate enhanced I(Ca) in atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced I(Ca) may be associated with elevated cardiac performance, because I(Ca) delivers the majority of Ca(2+) involved in excitation-contraction coupling in most fish hearts. Similarly, I(Ca) is enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号