首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.  相似文献   

2.
To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat''s frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.  相似文献   

3.
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format.  相似文献   

4.
Ward LM  MacLean SE  Kirschner A 《PloS one》2010,5(12):e14371
Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its "preferred" frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions.  相似文献   

5.
The ability to recognize abstract features of voice during auditory perception is an intricate feat of human audition. For the listener, this occurs in near-automatic fashion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and nonvoice acoustic stimuli to examine voice encoding at the cortical level in 8 patient-participants undergoing epilepsy surgery evaluation. We show that voice selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. Encoding models demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses are best explained by voice category and acoustics, as opposed to acoustic features of voice stimuli alone. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS to facilitate feature extraction.

Voice perception occurs via specialized networks in higher order auditory cortex, but how voice features are encoded remains a central unanswered question. Using human intracerebral recordings of auditory cortex, this study provides evidence for categorical encoding of voice.  相似文献   

6.
The common marmoset (Callithrix jacchus) is a small New World primate that has increasingly been used as a non-human model in the fields of sensory, motor, and cognitive neuroscience. However, little knowledge exists regarding behavioral methods in this species. Developing an understanding of the neural basis of perception and cognition in an animal model requires measurement of both brain activity and behavior. Here we describe an operant conditioning behavioral training method developed to allow controlled psychoacoustic measurements in marmosets. We demonstrate that marmosets can be trained to consistently perform a Go/No-Go auditory task in which a subject licks at a feeding tube when it detects a sound. Correct responses result in delivery of a food reward. Crucially, this operant conditioning task generates little body movement and is well suited for pairing behavior with single-unit electrophysiology. Successful implementation of an operant conditioning behavior opens the door to a wide range of new studies in the field of auditory neuroscience using the marmoset as a model system.  相似文献   

7.
In this article, we review a combined experimental-neuromodeling framework for understanding brain function with a specific application to auditory object processing. Within this framework, a model is constructed using the best available experimental data and is used to make predictions. The predictions are verified by conducting specific or directed experiments and the resulting data are matched with the simulated data. The model is refined or tested on new data and generates new predictions. The predictions in turn lead to better-focused experiments. The auditory object processing model was constructed using available neurophysiological and neuroanatomical data from mammalian studies of auditory object processing in the cortex. Auditory objects are brief sounds such as syllables, words, melodic fragments, etc. The model can simultaneously simulate neuronal activity at a columnar level and neuroimaging activity at a systems level while processing frequency-modulated tones in a delayed-match-to-sample task. The simulated neuroimaging activity was quantitatively matched with neuroimaging data obtained from experiments; both the simulations and the experiments used similar tasks, sounds, and other experimental parameters. We then used the model to investigate the neural bases of the auditory continuity illusion, a type of perceptual grouping phenomenon, without changing any of its parameters. Perceptual grouping enables the auditory system to integrate brief, disparate sounds into cohesive perceptual units. The neural mechanisms underlying auditory continuity illusion have not been studied extensively with conventional neuroimaging or electrophysiological techniques. Our modeling results agree with behavioral studies in humans and an electrophysiological study in cats. The results predict a particular set of bottom-up cortical processing mechanisms that implement perceptual grouping, and also attest to the robustness of our model.  相似文献   

8.
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.  相似文献   

9.
A prevailing theory proposes that the brain''s two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers'' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals'' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers'' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways.  相似文献   

10.
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues.  相似文献   

11.
Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex) encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.  相似文献   

12.
Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the “win-stay, lose-switch” strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.  相似文献   

13.
Auditory training programs are being developed to remediate various types of communication disorders. Biological changes have been shown to coincide with improved perception following auditory training so there is interest in determining if these changes represent biologic markers of auditory learning. Here we examine the role of stimulus exposure and listening tasks, in the absence of training, on the modulation of evoked brain activity. Twenty adults were divided into two groups and exposed to two similar sounding speech syllables during four electrophysiological recording sessions (24 hours, one week, and up to one year later). In between each session, members of one group were asked to identify each stimulus. Both groups showed enhanced neural activity from session-to-session, in the same P2 latency range previously identified as being responsive to auditory training. The enhancement effect was most pronounced over temporal-occipital scalp regions and largest for the group who participated in the identification task. The effects were rapid and long-lasting with enhanced synchronous activity persisting months after the last auditory experience. Physiological changes did not coincide with perceptual changes so results are interpreted to mean stimulus exposure, with and without being paired with an identification task, alters the way sound is processed in the brain. The cumulative effect likely involves auditory memory; however, in the absence of training, the observed physiological changes are insufficient to result in changes in learned behavior.  相似文献   

14.
Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the "modality appropriateness hypothesis", i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized "temporal hub".  相似文献   

15.
Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming.  相似文献   

16.
There is a growing interest in biomedical engineering in developing procedures that provide accurate simulations of the neural response to electrical stimulus produced by implants. Moreover, recent research focuses on models that take into account individual patient characteristics.We present a phenomenological computational model that is customized with the patient’s data provided by the electrically evoked compound action potential (ECAP) for simulating the neural response to electrical stimulus produced by the electrodes of cochlear implants (CIs). The model links the input currents of the electrodes to the simulated ECAP.Potentials and currents are calculated by solving the quasi-static approximation of the Maxwell equations with the finite element method (FEM). In ECAPs recording, an active electrode generates a current that elicits action potentials in the surrounding auditory nerve fibers (ANFs). The sum of these action potentials is registered by other nearby electrode. Our computational model emulates this phenomenon introducing a set of line current sources replacing the ANFs by a set of virtual neurons (VNs). To fit the ECAP amplitudes we assign a suitable weight to each VN related with the probability of an ANF to be excited. This probability is expressed by a cumulative beta distribution parameterized by two shape parameters that are calculated by means of a differential evolution algorithm (DE). Being the weights function of the current density, any change in the design of the CI affecting the current density produces changes in the weights and, therefore, in the simulated ECAP, which confers to our model a predictive capacity.The results of the validation with ECAP data from two patients are presented, achieving a satisfactory fit of the experimental data with those provided by the proposed computational model.  相似文献   

17.
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations.  相似文献   

18.
Traditionally, insights into neural computation have been furnished by averaged firing rates from many stimulus repetitions or trials. We pursue an analysis of neural response variance to unveil neural computations that cannot be discerned from measures of average firing rate. We analyzed single-neuron recordings from the lateral intraparietal area (LIP), during a perceptual decision-making task. Spike count variance was divided into two components using the law of total variance for doubly stochastic processes: (1) variance of counts that would be produced by a stochastic point process with a given rate, and loosely (2) the variance of the rates that would produce those counts (i.e., "conditional expectation"). The variance and correlation of the conditional expectation exposed several neural mechanisms: mixtures of firing rate states preceding the decision, accumulation of stochastic "evidence" during decision formation, and a stereotyped response at decision end. These analyses help to differentiate among several alternative decision-making models.  相似文献   

19.
视觉运动信息的感知过程,包括从局域运动检测到对模式整体运动的感知过程.我们以蝇视觉系统的图形-背景相对运动分辨的神经回路网络为基本框架,采用初级运动检测器的六角形阵列作为输入层,构造了一种感知视觉运动信息的简化脑模型,模拟了运动信息应该神经计算模型各个层次上的处理.该模型对差分行为实验结果作出了正确预测.本文并对空间生理整合的神经机制作了讨论.  相似文献   

20.
Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号