首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field work with two plots of grid, a snap trap being set on each station spaced 5 m apart, was executed in the summer of 1968 to evaluate prebaiting in census trapping by comparing the result in one plot, prebaited for three days, with that in the other not prebaited. Since the population was as high as some 230 per acre on the average in density and formed of the vole, Microtus montebelli, alone, sufficient samples were gathered irrespective of the plot size as small as 50×50 m. Owning to the circumstances, multiple collisions inflicted so intense influence on sampling especially in the prebaited plot that z-equation for census adjusted to the effect was well applicable to the data in either plot. In sampling, the fact that small voles are apt to be caught later than large voles was statistically evidenced in either sex, and yet any proof that males tend to be caught prior to females was not offered. It was ascertained in either plot that the daily catch was realized according to the same rule through the whole period of trapping in both external belt and internal square within the plot; hence it follows that no considerable immigration occurred. One of the beneficial effects of prebaiting is sure to be that the probability of capture was markedly enhanced in the prebaited plot, and a second is supposed, though inconclusively, to be that a good sampling could be executed consistently through the census period giving rise to no inordinate catches perhaps due to heterogeneous sampling as was seen in earlier days in the not prebaited plot. The supposition has derived from the condition that most of the whole population is trappable, which is established by interrelation among population density, size of home range and trap spacing. It was suggested that the effect of prebaiting should be evaluated from the view-point of the interrelation, because the basic utility of prebaiting consists in that it may help to our utlimate purpose to estimate the whole population.  相似文献   

2.
Removal trapping was used to try and reduce numbers of the predatory planarian Artioposthia triangulata in polythene tunnels on a nursery and a grass field. Ten months of trapping in the tunnels failed to have any impact upon flatworm numbers but weekly catches reduced over a period of 12 weeks' trapping in grassland. The calculated residual population in the grassland (40 ha-1) was small in comparison with that estimated from formalin sampling (940 × 1288 ha-1). A separate field study examined the effect of trap density on catch by spacing traps at 2.5, 5, 10 and 20 m intervals. This showed that the numbers of planarians caught was inversely related to the logarithm of trap spacing. It is concluded that removal trapping is too demanding of resources to be a viable control option for this pest in commercial and agricultural situations.  相似文献   

3.
Haiyan Nie  Jike Liu 《Oikos》2005,109(2):387-395
This paper reports the effects of food supply, predation and the interaction between them on the population dynamics of root voles, Microtus oeconomus , by adopting factorial experiments in field enclosures. This two-factor experiment proved the general hypothesis that food supply and predation had independent and additive effects on population dynamics of root voles. The experimental results proved the following predictions: (1) predation reduced population density and recruitment significantly; (2) food supply increased population density; (3) predation and food supply influenced spacing behavior of root voles separately and additively: Exposure to predation reduced long movements of root voles between trapping sessions; additional food supply reduced aggression level and home range size of root voles. Less movement of individuals that exposed to predators possibly reduced their opportunity of obtaining food and lessened population survival rate, which led population density to decrease. Smaller home range and lower aggression level could make higher population density tolerable. The interactive effect of predation and food on home range size was highly significant (P=0.0082<0.01). The interactive effect of food and predation on dispersal rate was significant (P<0.01). From the experimental results, we conclude that the external factors (predation, food supply) were more effective than internal factors (spacing behavior) in determining population density of root voles – under the most favorable external conditions (−P, +F treatment), the mean density and mean recruitment of root vole population was the highest; under the most unfavorable external conditions (+P, −F treatment), the mean density and mean recruitment of root vole population was the lowest.  相似文献   

4.
Steen H  Mysterud A  Austrheim G 《Oecologia》2005,143(3):357-364
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.Electronic supplementary material is available for this article at  相似文献   

5.
The goal of this study is to determine whether a parasitic nematode may regulate, or destabilise by inducing demographic cycles, its host populations. We explore three host–parasite systems through population dynamic models. The hosts considered are the fossorial water vole, Arvicola terrestris, the common vole Microtus arvalis and the bank vole Myodes (Clethrionomys) glareolus and the parasitic nematode is Trichuris arvicolae. Three differential equation-based mathematical models are developed including host immunity and the existence of trade-off between immunity and host survival. Using parameters estimated from field data and laboratory observations, all these models show that T. arvicolae can induce host population regulation but not demographic cycles. The regulation effect of the nematode is un-ambiguous for the water vole (reduction of 50.2% of the host population size), but less obvious for the common vole (5.9%) and even less for the bank vole (1.4%). Important biological parameters to be taken into account in such models are discussed. Experimental confirmation of the regulatory potential of the nematode and of the costs of mounting an immune response against this nematode are now required. Communicated by W. Lutz  相似文献   

6.
Decline and long-term depression of mean densities of the grey-sided vole (Myodes rufocanus) and the field vole (Microtus agrestis) have occurred in managed forest landscapes of Sweden since the 1970s. Generally poor over-winter survival during a period with mild winters suggested a common climatic driver, but other explanations exist. Here we explore the response of the grey-sided vole, preferring forested habitats, and the field vole, preferring open habitats, to clear-cutting of old forest in Sweden. The cumulated impact from long-term clear-cutting explained local disappearances of the grey-sided vole. Maintained connectivity of old forest to stone fields was important for local population survival, since no such populations disappeared. For the grey-sided vole, it is probable that climate is not the dominating driver due to different timing of the decline in our study area. Instead, habitat loss is concluded as being a potential cause of the decline in mean density and depression of grey-sided vole densities. The long-lasting depression of field vole densities, despite favourable landscape changes, suggests action of another strong driver. A recent field vole recovery, essentially back to pre-decline densities and distribution, coincided with favourable winter/snow conditions, suggesting a climatic driver in this case.  相似文献   

7.
布氏田鼠种群生态研究   总被引:10,自引:5,他引:10  
武晓东 《兽类学报》1990,10(1):54-59
1985年5-l0月用标志重捕法对布氏田鼠(Microtus brandti)的种群年龄组成、幼鼠生长率和季节迁移等进行研究,共标志2786只,重捕576只,822只次。发现布氏田鼠种群的年龄组成有较明显的季节变化。其幼鼠体重的日平均生长率随年龄增加而减慢。布氏田鼠还有季节迁移现象。  相似文献   

8.
Capture-recapture data on common volesMicrotus arvalis (Pallas, 1779) in central Europe have been almost exclusively analysed by means of the enumeration technique (minimum number alive or calendar of catches). Here we compare enumeration and Jolly-Seber (JS) estimation of population size in the common vole using live-trapping data from an alfalfa field-population in southern Moravia, Czech Republic. Over the entire study the enumeration estimate of the population size was smaller by an average of 28% than the JS estimate. The negative bias increased with density, decreased with both capture probability and the survival rate, and was more pronounced in males at high density. We conclude that the method of direct enumeration is not reliable for estimating population size in the common vole.  相似文献   

9.
P. Jonsson  E. Koskela  T. Mappes 《Oecologia》2000,122(4):487-492
Predator-prey interactions between small mammals and their avian and mammalian predators have attracted much attention. However, large-scale field experiments examining small-mammal antipredatory responses under the risk of predation by mammals are rare. As recently pointed out, the scale of experiments may cause misleading results in studies of decision-making under predation risk. We studied the effect of small mustelid predators on the spacing behaviour of the gray-tailed vole (Microtus canicaudus) and the bank vole (Clethrionomys glareolus) in two separate field enclosure experiments. The experiments were conducted during the breeding season in North America and northern Europe, where small mustelids have been suggested to be important mammalian predators of voles. As in most of the earlier laboratory studies, predation risk was simulated using fresh mustelid faeces and urine. This made it possible to compare the results from experiments at different spatial scales. We did not find any effect of increased predation risk on spacing behaviour (mean and/or maximum distance moved and home range size) or trappability in either vole species. Simulated predation risk did not affect the breeding of females in gray-tailed voles, as has previously been shown in bank voles. The results disagree with most of the studies conducted in laboratory conditions with small mammals. We discuss whether this discrepancy could be caused by differences in the scale of the experiments. Received: 12 April 1999 / Accepted: 7 October 1999  相似文献   

10.
本项研究在野外围栏条件下,采用析因实验设计,测定食物可利用性和捕食对根田鼠(Microtusoeconomus)种群空间行为的作用模式。检验的特定假设为,高质量食物较大的可利用性能降低田鼠的攻击行为和活动;捕食能减少田鼠的活动。研究结果表明,食物可利用性能间接地和直接地影响根田鼠的空间行为。附加食物种群具有较高的密度和较小的巢区,且在诱捕期间具有较少的长距离活动和较低的攻击水平。捕食者的存在不直接影响攻击行为,但能影响诱捕期间的长距离活动,此为根田鼠对捕食者存在作出的直接反应。在阐明田鼠种群动态时,应仔细考虑上述因子相互作用的效应。  相似文献   

11.
《Mammal Review》1982,12(4):169-181
In a short but intense field investigation, surface activity of common voles in a cropped lucerne field was assayed by live-trapping while, simultaneously, hunting activity and yield of three species of raptors were recorded by continuous observation. Pronounced short-term rhythms in trappability of the vole population ran parallel with fluctuations in yield per hour of flight-hunt of hen harriers and kestrels. These raptors, as well as Rough-legged buzzards, hunted more at times of increased vole surface activity; hen harriers saved c. 15 hours of flight-hunt per day by such temporal adjustment, corresponding to about 12% of their daily energy intake. Voles suffered a predation rate of an estimated 0 2% per day; under such heavy predation and temporal concentration of raptor hunting at times of increased vole activity, surface feeding in synchrony with the vole majority was associated with increased risk of predation.  相似文献   

12.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   

13.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

14.
Grazing‐induced changes in plant quality have been suggested to drive the negative delayed density dependence exhibited by many herbivore species, but little field evidence exists to support this hypothesis. We tested a key premise of the hypothesis that reciprocal feedback between vole grazing pressure and the induction of anti‐herbivore silicon defenses in grasses drives observed population cycles in a large‐scale field experiment in northern England. We repeatedly reduced population densities of field voles (Microtus agrestis) on replicated 1‐ha grassland plots at Kielder Forest, northern England, over a period of 1 year. Subsequently, we tested for the impact of past density on vole life history traits in spring, and whether these effects were driven by induced silicon defenses in the voles’ major over‐winter food, the grass Deschampsia caespitosa. After several months of density manipulation, leaf silicon concentrations diverged and averaged 22% lower on sites where vole density had been reduced, but this difference did not persist beyond the period of the density manipulations. There were no significant effects of our density manipulations on vole body mass, spring population growth rate, or mean date for the onset of spring reproduction the following year. These findings show that grazing by field voles does induce increased silicon defenses in grasses at a landscape scale. However, at the vole densities encountered, levels of plant damage appear to be below those needed to induce changes in silicon levels large and persistent enough to affect vole performance, confirming the threshold effects we have previously observed in laboratory‐based studies. Our findings do not support the plant quality hypothesis for observed vole population cycles in northern England, at least over the range of vole densities that now prevail here.  相似文献   

15.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

16.
Survival patterns of cohorts are described during a population cycle of the vole Microtus townsendii near Vancouver, British Columbia, Canada. A two–year live–trapping study on both enclosed and unfenced populations showed that cohorts during the increase phase of growth lived longest and had the best survival. Smaller voles in the peak density spring cohort had poor survival, but survival increased during the peak density summer. Survival of cohorts in the decline phase breeding season was very poor. The suggestions are made that changes in spacing behaviour may cause changes in cohort survival and that the causes of rapid changes in survival need to be determined.  相似文献   

17.
Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew.  相似文献   

18.
Populations of the vole, Clethrionomys rufocanus, in a lowland woodlot of Hokkaido were studied for the presence of effects of prebaiting on censusing by the capture-recapture method. A grid of 121 live-traps, spaced 5 m apart, was laid out on each of two plots, one of which alone was prebaited three days long. Owing to very high densities and great trap-efficiency, sufficient and favourable samples could be available for statistical analysis, except the trend of delayed catch for young in sampling. The population on either plot, however, proved to be markedly variable in catchability of unmarked animals in the course of trapping; while the probability of recapture was counted as invariable on the average from day to day, the recapture frequency was different between juveniles, subadults and adults. Needless to say, the catchability was distinctly greater for marked voles than for unmarked ones, whether prebaited or not, through the trapping period, except that the first-day catchability for unmarked ones on the prebaited plot seems not to be significantly lower than that for marked ones. Consequently, it turns out that the prebaiting has almost never helped to eliminate the important bias induced by differential trap-response of marked and unmarked animals; its contribution is only that the catchability for unmarked ones is slightly higher on the part of the prebaited plot on earlier days of the period. In accordance with the heterogeneous catchability, the Γ-form distribution analogous to the geometric could be applied with thorough fitness to the capture frequency in order to estimate the whole populations. The fact that the estimates are reliable, being not at any rate underestimates, was further confirmed by the result of a follow-up work conducted by means of the removal method with wider trap-spacing which brought forth distinct underestimation chiefly referable to unexposure to traps of the partial populations. The subject of unexposure was discussed by laying stress on the relation between minimum range length and trap-spacing.  相似文献   

19.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

20.
In small rodent populations with wide-amplitude fluctuations and low-density bottlenecks, the individuals that survive through the bottlenecks may gain major fitness advantages as they will be the founders of the following population expansion. Most hypotheses assume that there exists a physical or behavioural refuge from increased predation risk, and that the survivors are most likely individuals adapted to use such refuges. A recent hypothesis suggests that survival probability is habitat-dependent so that some otherwise sub-optimal habitats provide a spatial refuge from predation risk by the main predator(s). We used spatially replicated long-term (1981–2004) trapping and tracking data of voles (field vole Microtus agrestis and sibling vole M. rossiaemeridionalis) and their main predators (weasel Mustela nivalis and stoat M. erminea) to test predictions based on this hypothesis. We did not find support for the hypothesis. We did not find marked phase-dependent differences in the habitat-level distribution of Microtus voles. Habitat types with low Microtus vole abundance had, on average, comparable predator activity than the main Microtus vole habitats, indicating that there were no habitat-level refuges from predators. There appeared to be no permanent site-level refuges: the spatial distribution of voles varied from one bottleneck to another. This suggests that survival through bottlenecks is at least partly determined by chance events. We propose that in this kind of systems, where relatively short-lived prey are hunted by nomadic or widely ranging predators, short-term anti-predator responses may increase survival prospects as efficiently as more costly anti-predator adaptations, and there is no apparent need to maintain special adaptations to bottleneck situations that occur at infrequent intervals.Co-ordinating editor: J. Tuomi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号