首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic aspects of H-Y antigen   总被引:3,自引:0,他引:3  
Summary While it remains to be clarified what detection of H-Y antigen by current methods means, the existence of a factor governing testicular differentiation of the indifferent gonadal anlage seems to be well established. There are various kinds of evidence that H-Y antigen as a biologically meaningful factor has a complex genetical basis. There is the contribution of the Y chromosome which, independent of the number of other chromosomes, especially of X chromosomes, leads to a male phenotype. The X chromosome must be involved also because structural aberrations of its distal short arm influence the expression of the H-Y structural gene. Due to examples of autosomal inheritance of various forms of sex reversal, an autosomal gene is assumed to be involved as well. Arguments are presented favoring the assumption that the structural H-Y gene is autosomal, while genes on the X and Y chromosomes have a controlling function.This genetic control mechanism for H-Y antigen seems to have evolved secondary to placentation in mammals. In non-mammalian vertebrates, H-Y antigen is controlled by other factors, e.g. steroid hormones. While the functional role of H-Y antigen in directing differentiation of the heterogametic gonad appears to have been preserved during evolution, the mechanism of its control has changed. This latter mechanism is only poorly understood.  相似文献   

2.
H-Y antigen is a surface component associated with the heterogametic sex of various species and supposed to induce testicular differentiation. Genes controlling directly or not the expression of H-Y antigen and testicular differentiation have been localized on Y as well as on X chromosome and even autosomal chromosome. However the genetical localization of the H-Y structural gene remains unknown. We analysed the expression of H-Y antigen in three types of sexual dysgenesis (males bearing XX caryotype, testicular feminization syndrome and one case of hermaphroditism) to clarify the function and the genetics of this antigen.  相似文献   

3.
About ScienceDirect 《Genomics》1992,13(4):1255-1260
A gene encoding or controlling the expression of the H-Y transplantation antigen was previously mapped to the human Y chromosome. We now report the sublocalization of this gene on the long arm of the human Y chromosome. Eight patients with Y-chromosomal abnormalities were examined with a series of existing and new DNA markers for the Y chromosome. The resulting deletion map was correlated with H-Y antigen expression. We conclude that the H-Y antigen gene maps to a portion of deletion interval 6 that is identified by specific DNA markers.  相似文献   

4.
5.
Summary A 42-year-old male had short stature, microphallus, hypospadias, a bifid scrotum, abdominal undifferentiated testes, a uterus, bilateral fallopian tubes, and 45,X/46,XYq-mosaicism in his blood, skin, and germinal tissue and tissue surrounding the testes as determined by means of G-, Q-, and C-banding. An H-Y antigen assay on skin fibroblasts was positive, indicating that the locus for this antigen is not located in the brightly fluorescent region of the Y chromosome.  相似文献   

6.
H-Y antigen, first described as a male minor transplantation antigen, is unvarying associated with testicular differentiation, more than the presence of Y chromosome. The weak reactivity of anti H-Y serum needs quantitative and very sensitive tests to detect presence or absence of H-Y. This antigen may act as an hormone, to induce testicular differentiation of target cells, bearing a specific receptor at their surface. The relationship between an H-Y molecule immunologically defined by its antigenicity and H-Y factor defined by its function to induce testicular organogenesis must be determined.  相似文献   

7.
Summary H-Y antigen was studied serologically on blood cells and cultured fibroblasts of patients with numerical aberrations of the sex chromosomes. As compared with normal males, patients with the karyotypes 48,XXXY and 49,XXXXY have reduced H-Y antigen titrs; a tendency toward reduced titers can also be detected in the 47,XXY Klinefelter syndrome. The existence of an intermediary titer was further substantiated by a quantitative absorption test applied to cells with the 49,XXXXY karyotype. It appears that in the presence of one Y chromosome, the H-Y antigen titer decreases with an increasing number of X chromosomes. In contrast, the H-Y antigen titer is increased if, at a given number of X chromosomes, the number of Y chromosomes is increased, as in the 47,XYY male. Consequently, patients with 48,XXYY chromosomes are in the male control range. The findings are interpreted under the hypothesis of a controlling or modifying influence of the sex chromosomes on the titer of H-Y antigen.  相似文献   

8.
Summary The existence of a strict correlation between presence of testicular tissue and presence of H-Y antigen in mammals and man leads to the conclusion that H-Y antigen is an essential differentiation factor in testicular morphogenesis. Presence of low titers of this differentiation antigen even in fertile females indicates that its morphogenetic effect depends on a threshold. Here, studies on H-Y antigen in female individuals with various deletions of the X-chromosome are reported. It turns out that deletion of Xp results in the synthesis of reduced amounts of H-Y antigen, while deletion of Xq does not. In a fertile female with only Xp223 deleted due to an X/Y translocation, including the distal Yq, presence of a reduced H-Y titer allows for the tentative assignment of a controlling gene repressing the H-Y structural gene. From the cases studied, it follows that the H-Y structural gene is autosomal and under the control of X- and Y-linked genes. The conception emerges that interaction between X- and Y-linked genes or their products results in variation of the H-Y antigen titer. The fate of the indifferent gonadal anlage to differentiate into the male or the female direction will depend on the titer of H-Y antigen reached by the action or interaction of the controlling genes involved.Supported by the Deutsche Forschungsgemeinschaft (SFB 46)  相似文献   

9.
Yukifumi Nagai  Susumu Ohno 《Cell》1977,10(4):729-732
The XO sex chromosome constitution has been found in both sexes of the mole-vole (Ellobius lutescens) belonging to the rodent family Microtinae. This enigmatic species has apparently been enduring a 50% zygotic lethality. The current serological study revealed the presence in XO males and the absence from XO females of H-Y (histocompatibility Y) antigen. In all the mammalian species studied thus far, the expression of H-Y antigen strictly coincided with the presence of testicular tissue and not necessarily with the presence of the Y chromosome. The testis-organizing function of the H-Y gene appears to have been confirmed.In the mole-vole, X linkage of the testis-organizing H-Y gene is favored over its autosomal inheritance. Only X linkage of the H-Y gene creates a compelling evolutionary need to change the female sex chromosome constitution from XX to XO, and to abandon the dosage compensation by an X inactivation mechanism, so that the nonproductive XH-YX zygote can be eliminated as an embryonic lethal. With regard to the electrophoretic mobilities of three X-linked marker enzymes, however, a genetic difference between the male-specific XH-Y and the female-specific X was not detected. This might reflect a relatively recent speciation.  相似文献   

10.
H-Y antigen(s) coded or controlled by the Y chromosome in a variety of wild mouse strains have been compared with those of the inbred laboratory strains C57BL/6 (B6) and C57BL/10 (B10). H-Y antigen(s) were detected by H-2-restricted cytotoxic T cells from B6 and B10 female mice primed in vivo and boosted in vitro with syngeneic male spleen cells: There was no difference in the degree of H-Y specific lysis of male cells from the C57BL strains and of F1 hybrids or B6 congenic mice carrying the Y chromosome from the wild mouse strains examined. This result indicated that at the level of target cell specificity the H-Y antigen(s) from wild and laboratory strains were indistinguishable. H-Y antigen(s) were also found to be indistinguishable at the level of the in vitro induction of the anti H-Y cytotoxic response: F1 female mice, primed in vivo and boosted in vitro with homologous F1 male cells, all made H-Y-specific responses and where it could be examined, the target cell specificity of the anti-H-Y cytotoxic cells showed that B10 male cells as well as the homologous F1 male cells (where the Y chromosome was derived from the wild strain) were good targets. Finally, possible differences in H-Y transplantation antigens between the wild strains and the B10 laboratory strain were examined by grafting F1 male mice, the progeny of B10 females, and wild strain males with B10 male skin. These grafts were not rejected during an observation period of more than 9 months. Taken together, neither the cytotoxic data nor the skin graft data provide any evidence for allelism of H-Y even though the mouse strains examined were collected from widely disparate geographical locations.  相似文献   

11.
Karyotypically XY individuals of the C57BL/6J-YPOS mouse stock develop as females or hermaphrodites, but never as normal males. The aberrant sexual development results from the interaction of the C57BL/6J genetic background with the M. poschiavinus-derived Y chromosome. XY females from this stock were assayed for H-Y antigen. By the criteria of skin-grafting, the cell-mediated lympholysis test, and the popliteal lymph node assay, these XY females are antigenically indistinguishable from normal C57BL/6 males. Implications for the hypothesis that H-Y antigen induces formation of the mammalian testis are discussed.  相似文献   

12.
Summary H-Y antigen was investigated in 18 specimens representing six different sex chromosome constitutions of the wood lemming (Myopus schisticolor). The control range of H-Y antigen was defined by the sex difference between normal XX females (H-Y negativeper definitionem) and normal XY males (H-Y positive, full titer). H-Y antigen titers of the X*Y and X*0 females were in the male control range, while in the X*X and X0 females the titers were intermediary. Data were obtained with two different H-Y antigen assays: the Raji cell cytotoxicity test and the peroxidase-antiperoxidase (PAP) method. Fibroblasts, gonadal cells, and spleen cells were checked. Presence of full titers of H-Y antigen in the absence of testis differentiation is readily explained by the assumption of a deficiency of the gonadspecific receptor of H-Y antigen. Since sex reversal is inherited as an X-linked trait, genes for this receptor are most likely X-linked. The implications of our findings are discussed in connection with earlier findings concerning H-Y antigen in XY gonadal dysgenesis in man and the X0 situation in man and mouse.  相似文献   

13.
Summary In view of the claimed serological H-Y positivity observed in patients with ovarian dysgenesis (for example, 45,X) and in XO mice (neither of whom have a Y chromosome), it is suggested that genetic control is exercised over the H-Y system by structural genes on the pairing segments of the X and Y chromosomes, acting on an autosomally coded H-Y precursor.  相似文献   

14.
Summary H-Y antigen was determined in seven XO-, nine XO/XX patients, in one patient with i(Xq), and in one patient with a mosaic XO/XYqh-. It turned out that all patients are H-Y antigen positive, confirming the results of earlier investigations of H-Y antigen in patients with Turner's syndrome. The results in XO/XX mosaics clearly demonstrate that the XO-cell is H-Y antigen positive and support the view of a regulatory gene for H-Y antigen gene expression which is located on the X chromosome.  相似文献   

15.
H-Y antigens   总被引:2,自引:0,他引:2  
U. Müller 《Human genetics》1996,97(6):701-704
H-Y antigen is defined as a male histocompatibility antigen that causes rejection of male skin grafts by female recipients of the same inbred strain of rodents. Male-specific, or H-Y antigen(s), are also detected by cytotoxic T cells and antibodies. H-Y antigen appears to be an integral part of the membrane of most male cells. In addition, H-Y antibodies detect a soluble form of H-Y that is secreted by the testis. The gene (Smcy/SMCY) coding for H-Y antigen detected by T cells has been cloned. It is expressed ubiquitously in male mice and humans, and encodes an epitope that triggers a specific T -cell response in vitro. Additional epitopes coded for by different Y-chromosomal genes are probably required in vivo for the rejection of male grafts by female hosts. The molecular nature of H-Y antigen detected by antibodies on most male cells is not yet known. Testis-secreted, soluble H-Y antigen, however, was found to be identical to Müllerian-inhibiting substance (MIS). MIS cross-reacts with H-Y antibodies and identical findings were obtained for soluble H-Y antigen and MIS, i.e., secretion by testicular Sertoli and, to a lesser degree, ovarian cells, binding to a gonad-specific receptor, induction of gonadal sex reversal in vitro and, in cattle, in vivo. H-Y antisera also detect a molecule or molecules associated with the heterogametic sex in nonmammalian vertebrates. Molecular data on this antigen or antigens are not yet available.  相似文献   

16.
A study was conducted to rapidly fractionate bovine spermatozoa on the basis of cell-surface H-Y antigen (i.e., Y chromosome-bearing spermatozoa). A novel, rapid immunomagnetic method was developed for removal of spermatozoa that bound to anti-H-Y IgG. Fluorescent labeling and flow cytometry were used to measure the efficiency with which spermatozoa binding to anti-H-Y were removed by the immunomagnetic technique. Washed bovine spermatozoa (n=7 bulls) were treated with a mouse monoclonal IgG antibody to H-Y antigen (MoAb 12/49). Fluorescent labeled goat antibody against mouse IgG was added to label those spermatozoa with cell-surface H-Y antigens. Supermagnetized polymer beads coated with an anti-antibody to the MoAb 12/49 were then added to the spermatozoa. After 20 min of incubation, spermatozoa were exposed for 2 min to a magnet, causing the magnetized particles to adhere to the sides of the tube. Nonmagnetized spermatozoa in the supernatent were aspirated and analyzed for fluorescent label by flow cytometry. Approximately 50% of spermatozoa not subjected to immunomagnetic separation were fluorescent labeled, and about one-half of the spermatozoa were observed microscopically to be bound to the magnetized polymer beads prior to magnetic separation (P<0.05). Following magnetic separation, only 1.2% (P<0.05) of the spermatozoa in the magnetic supernatent were fluorescent labeled. Assuming that only Y chromosome-bearing spermatozoa have cell-surface H-Y antigens, the present immunomagnetic fractionation removed almost all of the Y chromosome-bearing spermatozoa, leaving a population that was greater than 98% X chromosome-bearing spermatozoa.  相似文献   

17.
Summary H-Y antigen expression was studied on leukocytes and gonad-derived fibroblasts from a patient affected by mixed gonadal dysgenesis. Blood leukocytes and fibroblasts derived from the testis were typed H-Y positive, but the fibroblasts derived from the streak gonad were H-Y negative. Although the patient's karyotype was a mosaic, 45,XO/46,X+mar, as detected in-peripheral blood cells and testis-derived fibroblasts, all the fibroblasts derived from the streak gonad were 45,XO. These data suggests that the marker chromosome was in fact a Y-derived chromosome. Moreover, they showed that, at the gonadal level, a minority of H-Y positive 46,X+mar cells were able to organize a testis. Nevertheless, a large number of XO cells probably did not receive the testicular forming influence of the H-Y antigen and of the other masculinizing factors.  相似文献   

18.
Summary Cells from an XX true hermaphrodite expressed a reduced amount of H-Y antigen when compared with normal XY cells and with cells from his father, who had an XY/XX chromosomal constitution. His mother had a normal karyotype and was H-Y negative. The four brothers of the patient were clinically and karyotypically normal. An X-Y interchange followed by random inactivation of the X chromosome is proposed to explain the H-Y antigen titer found in the patient.  相似文献   

19.
Summary H-Y antigen was determined in eight transsexual patients. Two of the four male-to-female transsexual patients typed as H-Y antigen-negative, while the other two typed as expected from their phenotypic and gonadal sex, namely H-Y antigen-positive. Of the four female-to-male transsexual patients, three typed as H-Y antigen-positive and one was H-Y antigen-negative, as expected. The presence of normal testes in H-Y antigen-negative males is assumed to result from a mutation of nucleotide sequences of the H-Y structural gene for antigenic determinants. Thus, an H-Y is produced with normal receptor-binding activity which can sustain the testis determination of the bipotent gonadal anlage. In the case of H-Y antigen-positive females with normal ovaries a deletion of the autosomally located H-Y structural gene is assumed. This deletion should affect sequences for repressor-binding (as was suggested for H-Y antigen-positive XX-males) and for receptor-binding activity of the H-Y antigen molecule. The resulting H-Y antigen is unable to bind to the gonadal receptor of the bipotent gonadal anlage. Thus an ovary is determined. The relevance of H-Y antigen for the aetiology of transsexualism is discussed.  相似文献   

20.
An exceptional (C57BL/6 × BALB/c)F1 male mouse, from an X-irradiated father, and lacking the H-Y (male) antigen, on the basis of skin-graft testing, was found. Conventional serological tests for H-Y antigen, however, were positive. His karyotype contained only 39 chromosomes, the Y chromosome apparently being absent. Although the testes were small, lacked germ cells, and were essentially Leydig cell tumors, the mutant was normal with respect to external male phenotype, accessory glands, and sexual behavior. The data suggest that the histogenic and serological tests for H-Y antigen may detect two different antigens, paralleling findings with mutants of theH-2 complex, where histoincompatibility can be generated without accompanying serological changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号