首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convergent stereoselective synthesis of (4R,15R,16R,21S)- and (4R,15S,16S,21S)-rollicosin and squamostolide was accomplished via a Pd-catalyzed cross-coupling reaction. The inhibitory activity of these compounds was examined with bovine heart mitochondrial NADH-ubiquinone oxidoreductase. These compounds showed a remarkably weak inhibitory activity compared to ordinary acetogenins such as bullatacin. Our results indicate that to maintain potent inhibitory effect, the hydroxylated lactone cannot substitute for the hydroxylated mono- or bis-THF rings with a long alkyl chain that can be seen in ordinary acetogenins.  相似文献   

2.
AIMS: The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium. METHODS AND RESULTS: The minimum inhibitory concentration (MIC) of five natural organic compounds were determined, and the effect of their combinations with nisin was evaluated by the checkerboard assay using the Bioscreen C. As expected, nisin by itself showed no inhibition against either of the Gram-negative bacteria. Thymol was found to be the most effective with the lowest MIC values of 1.0 and 1.2 mmol 1-1 against Salm. Typhimurium and E. coli, respectively. After thymol, the antimicrobial order of the natural organic compounds was carvacrol > eugenol > cinnamic acid > diacetyl. However, the combination of nisin with the natural organic compounds did not result in the enhancement of their antimicrobial activities. On the contrary, combination of nisin with diacetyl against Salm. Typhimurium resulted in an antagonism of diacetyl activity. CONCLUSIONS: While the individual natural organic compounds showed inhibitory activity against the two Gram-negatives, their combinations with nisin showed no improvement of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of the natural organic compounds to control E. coli and Salm. Typhimurium.  相似文献   

3.
New 4-phenylbutanoyl-2(S)-acylpyrrolidines and 4-phenylbutanoyl-L-prolyl-2(S)-acylpyrrolidines were synthesized. Their inhibitory activity against prolyl oligopeptidase from pig brain was tested in vitro. In the series of 4-phenylbutanoyl-2(S)-acylpyrrolidines, the cyclopentanecarbonyl and benzoyl derivatives were the best inhibitors having IC(50) values of 30 and 23 nM, respectively. This series of compounds shows that the P1 pyrrolidine ring, which is common in most POP inhibitors, can be replaced by either a cyclopentyl ring or a phenyl ring, causing only a slight decrease in the inhibitory activity. In the series of 4-phenylbutanoyl-L-prolyl-2(S)-acylpyrrolidines the cyclopentanecarbonyl and benzoyl derivatives were not as active as in the series of 4-phenylbutanoyl-2(S)-acylpyrrolidines. The hydroxyacetyl derivative did however show high inhibitory activity. This compound is structurally similar to JTP-4819, which is one of the most potent prolyl oligopeptidase inhibitors. The acyl group in the two series of new compounds seems to bind to different sites of the enzyme, since the second series of new compounds did not show the same cyclopentanecarbonyl or benzoyl specificity as the first series.  相似文献   

4.
Graded concentrations (0.1-100 mg/mL reaction mixture) of the methanolic extract of the flowers of Hibiscus rosa-sinensis Linn., its water-soluble fraction as well as compounds isolated from this fraction were tested for their inhibitory effect on alkaline phosphatase enzyme activity in vitro. Both the methanolic extract and its water-soluble fraction showed significant inhibitory effects on the enzyme activity in vitro. On screening the activity of the compounds isolated from the water-soluble fraction, its high inhibitory activity was attributed to the presence of quercetin-7-O-galactoside which showed a high potent inhibition of the enzyme activity reaching 100% at 100 mg/mL reaction mixture. Phytochemical investigations of the water-soluble fraction were also carried out and afforded ten polyphenolic compounds including two new natural compounds, namely kaempferol-7-O-[6'-O-p-hydroxybenzoyl-beta-D-glucosyl-(1-->6)-beta-D-glucopyranoside] and scutellarein-6-O-alpha-L-rhamnopyranoside-8-C-beta-D-glucopyranoside). The chemical structure of the isolated compounds was elucidated on the basis of chemical and spectral data.  相似文献   

5.
Mispyric acid is a novel natural triterpene dicarboxylic acid which has inhibitory activity against DNA polymerase beta (pol beta) isolated from the plant, Mischocarpus pyriformis. In this report, we examine the selectivity of the inhibitory activity against mammalian pols and the mode of inhibition in vitro. Natural mispyric acid (compound 1) inhibited the activities of all the mammalian pols tested (pol alpha, beta, gamma, delta and epsilon) with an IC50 value in the range of 3.6-44.5 microM. The inhibition was strongest for pol gamma among these five pols. The enantiomer of mispyric acid (compound 2, ent-mispyric acid) had similar effects to those of the natural compound. However, derivatives of compounds 1 and 2 with hydroxyl groups instead of carboxyl groups (i.e., compounds 3 and 4, respectively) exhibited no inhibitory effect on mammalian pols. The moiety of two carboxylic acids in mispyric acid was important for the inhibition of pols, and the stereoisomers of mispyric acid had no inhibitory effect.  相似文献   

6.
Chiral N,N-disubstituted trifluoro-3-amino-2-propanols represent a recently discovered class of compounds that inhibit the neutral lipid transfer activity of cholesteryl ester transfer protein (CETP). These compounds all contain a single chiral center that is essential for inhibitory activity. (R,S)SC-744, which is composed of a mixture of the two enantiomers, inhibits CETP-mediated transfer of [(3)H]cholesteryl ester ([(3)H]CE) from HDL donor particles to LDL acceptor particles with an IC(50) = 200 nM when assayed using a reconstituted system in buffer and with an IC(50) = 6 microM when assayed in plasma. Upon isolation of the enantiomers, it was found that the (R,+) enantiomer, SC-795, was about 10-fold more potent than the mixture, and that the (S,-) enantiomer, SC-794, did not have significant inhibitory activity (IC(50) > 0.8 microM). All of the activity of the (S,-)SC-794 enantiomer could be accounted for by contamination of this sample with a residual 2% of the highly potent (R,+) enantiomer, SC-795. The IC(50) of (R,+)SC-795, 20 nM, approached the concentration of CETP (8 nM) in the buffer assay. These chiral N,N-disubstituted trifluoro-3-amino-2-propanols were found to associate with both LDL and HDL, but did not disrupt overall lipoprotein structure. They did not affect the on or off rates of CETP binding to HDL disk particles. Inhibition was highly specific since the activities of phospholipid transfer protein and lecithin cholesterol acyl transferase were not affected. Competition experiments showed that the more potent enantiomer (R)SC-795 prevented cholesteryl ester binding to CETP, and direct binding experiments demonstrated that this inhibitor bound to CETP with high affinity and specificity. It is estimated, based on the relative concentrations of inhibitor and lipid in the transfer assay, that (R)SC-795 binds approximately 5000-fold more efficiently to CETP than the natural ligand, cholesteryl ester. We conclude that these chiral N,N-disubstituted trifluoro-3-amino-2-propanol compounds do not affect lipoprotein structure or CETP-lipoprotein recognition, but inhibit lipid transfer by binding to CETP reversibly and stereospecifically at a site that competes with neutral lipid binding.  相似文献   

7.

Background

There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.

Methods and Results

The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC) of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index) of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%.

Conclusion

Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.  相似文献   

8.
There is a wealth of evidence that hepatic stellate cells (HSCs) orchestrate most of the important events in liver fibrogenesis. After liver injury, HSCs become activated to a profibrogenic myofibroblastic phenotype and can regulate net deposition of collagens and other matrix proteins in the liver. The proliferation of HSCs is mainly stimulated by the platelet-derived growth factor (PDGF). In this study, some compounds from natural resources have been tested for their activity to inhibit PDGF-driven proliferative activity of rat HSCs. Apigenin, quercetin, genistein, daidzin, and biochanin A exhibited > 75% inhibitory activity against HSC-T6. It was found that, gamma-linolenic (gamma-Ln), eicosapentanoic (EPA) and a- linolenic (alpha-Ln) acids showed a high inhibitory effect on proliferation of rat HSCs at 50 nmol/1. Cholest-4-ene-3,6-dione and stigmastone-4-en-3,6-dione are the most active steroids with inhibitory activities > 80% and this is most likely due to the presence of the 4-en-3,6-dione moiety in both compounds. These results revealed that the compounds which effectively blocked HSC proliferation may be beneficial in liver fibrosis. Structure-activity relationships (SAR) may provide a basis for rational structure modification.  相似文献   

9.
10.
Ebselen (EB, compound 1) is an investigational organoselenium compound that reduces fungal growth, in part, through inhibition of the fungal plasma membrane H+‐ATPase (Pma1p). In the present study, the growth inhibitory activity of EB and of five structural analogs was assessed in a fluconazole (FLU)‐resistant strain of Candida albicans (S2). While none of the compounds were more effective than EB at inhibiting fungal growth (IC50 ~ 18 μM), two compounds, compounds 5 and 6, were similar in potency. Medium acidification assays performed with S2 yeast cells revealed that compounds 4 and 6, but not compounds 2, 3, or 5, exerted an inhibitory activity comparable to EB (IC50 ~ 14 μM). Using a partially purified Pma1p preparation obtained from S2 yeast cells, EB and all the analogs demonstrated a similar inhibitory activity. Taken together, these results indicate that EB analogs are worth exploring further for use as growth inhibitors of FLU‐resistant fungi.  相似文献   

11.
The study describes the inhibitory activity of natural piericidins and related compounds, including synthetic analogues, to the electron transport system of mitochondria. Consideration of the structure-activity relationships led to the proposing of a structural unit I that was essential to inhibitory activity.  相似文献   

12.
Some alpha,omega-alkanediyl bis-dimethylammonium bromide compounds (gemini surfactants) referred as "m-s-m" have been synthesized, purified and characterized by usual spectroscopic methods. These compounds have been screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Their activity was compared. The compounds tested showed excellent in vitro antibacterial activity against Staphylococcus aureus ranging from 1.5 to 20 microg/ml and had variable activity against E. coli with minimum minimum inhibitory concentration (MIC) of 50 microg/ml. These compounds are less active against P. aeruginosa. On the other hand, contrary to the antibacterial activity of these products against S. aureus, a relation between the MIC and the critical micellar concentration (CMC) was found and relationship between chain's Length and antibacterial activity was found.  相似文献   

13.
The first aim of the present study was to evaluate which structural elements of the 2-methoxy-4-vinylphenol (MVP) molecule (1) are responsible for its observed activity as germination inhibitor in wheat seeds. To find its mode of action, a series of compounds with varying functional moieties and substitution patterns were prepared and evaluated for their inhibitory activity. This systematic competitive inhibition study characterized two criteria for the effective increase of the inhibiting ability: (i) ortho substitution to each of the hydroxy and methoxy groups; (ii) alkene moiety on the ring. Understanding how the structure of natural compounds relates to their inhibition function is fundamentally important and may help to facilitate their application as novel inhibitors to restrain preharvest sprouting (PHS) in wheat fields. In this regard, in MVP and its natural analogues 8 and 9 as the most active inhibitors, the ortho substitution of hydroxy and methoxy groups plays a key role in their activity and, as well, the alkene moiety influences the activity significantly.  相似文献   

14.
The anti-staphylococcal activity of Angelica dahurica (Bai Zhi)   总被引:6,自引:0,他引:6  
Bioassay-guided fractionation of a hexane extract prepared from the roots of the Chinese drug Angelica dahurica (Bai Zhi) led to the isolation of the polyacetylenic natural product falcarindiol (1). The absolute stereochemistry of this compound was confirmed by careful 1H NMR analysis of its (R)- and (S)-Mosher ester derivatives as the 3(R), 8(S) isomer. Activity was tracked using a Mycobacterium fortuitum screening assay and the purified product was evaluated against multidrug-resistant and methicillin-resistant strains of Staphylococcus aureus (MRSA). The minimum inhibitory concentrations (MIC) of this metabolite ranged from 8 to 32 microg/ml highlighting the potential of the acetylene natural product class as antibiotic-lead compounds. These MIC values compare favourably with some of the newest agents in development for the treatment of MRSA infection and indicate that further evaluation of the antibiotic activity of acetylenes is warranted.  相似文献   

15.
Levy M  Porat Y  Bacharach E  Shalev DE  Gazit E 《Biochemistry》2008,47(22):5896-5904
The study of the mechanism of amyloid fibril formation and its inhibition is of key medical importance due to the lack of amyloid assembly inhibitors that are approved for clinical use. We have previously demonstrated the potent inhibitory potential of phenolsulfonphthalein, a nontoxic compound that was approved for diagnostic use in human subjects, on aggregation of islet amyloid polypeptide (IAPP) that is associated with type 2 diabetes. Here, we extend our studies on the mechanism of action of phenolsulfonphthalein by comparing its antiamyloidogenic effect to a very similar compound that is also approved for human use, phenolphthalein. While these compounds have very similar primary chemical structures, they significantly differ in their three-dimensional conformation. Our results clearly demonstrated that these two compounds had completely different inhibitory potencies: While phenolsulfonphthalein was a very potent inhibitor of amyloid fibril formation by IAPP, phenolphthalein did not show significant antiamyloidogenic activity. This behavior was observed with a short amyloid fragment of IAPP and also with the full-length polypeptide. The NMR spectrum of IAPP 20-29 in the presence of phenolsulfonphthalein showed chemical shift deviations that were different from the unbound or phenolphthalein-bound peptide. Differential activity was also observed in the inhibition of insulin amyloid formation by these two compounds, and density-gradient experiments clearly demonstrated the different inhibitory effect of the two compounds on the formation of prefibrillar assemblies. Taken together, our studies suggest that the three-dimensional arrangement of the polyphenol phenolsulfonphthalein has a central role in its amyloid formation inhibition activity.  相似文献   

16.
Aim: To determine the antimicrobial activity of natural organic compounds alone and in combination with nisin on the growth of Enterobacter sakazakii in laboratory media. Methods and Results: The minimum inhibitory concentrations (MIC) of five natural organic compounds were determined, and their effects in combination with nisin were evaluated by comparing treatment with each natural organic compound alone and in combination with 25 mg ml?1 nisin in tryptic soy broth. Among the tested natural organic compounds, the MIC of carvacrol and thymol was 1·25 mmol l?1 and showed the strongest inhibitory activity against E. sakazakii, whereas the MIC of cinnamic acid was higher than 5 mmol l?1, and therefore showed the weakest inhibitory activity. However, the combination of each compound with nisin did not result in the enhancement of their antimicrobial activities except when nisin was combined with diacetyl. Conclusions: The order of inhibition attributed to natural organic compounds was carvacrol = thymol > eugenol > diacetyl > cinnamic acid, and only the combination of diacetyl and nisin showed a synergistic effect of inhibiting the growth of E. sakazakii. Significance and Impact of the Study: This study shows the potential of natural organic compounds for controlling E. sakazakii.  相似文献   

17.
Benzofuroquinolinediones (7c and 7d) were synthesized by base-catalyzed condensation of dichloroquinolinediones with phenolic derivatives. Their dialkylaminoalkoxy derivatives (8i-8p) were prepared by reaction with various dialkylaminoalkyl chlorides. The cytotoxicity of the synthesized compounds was evaluated against eight types of human cancer cell lines, and their topoisomerase II inhibition was assessed. In general, the cytotoxicity of benzofuroquinolinediones (8i-8p) was similar or superior to that of doxorubicin and showed more potent inhibitory activity than naphthofurandiones (8a-8h). Also, most of the compounds exhibited excellent topoisomerase II inhibitory activity at a concentration of 5 microM and two compounds, 8d and 8i, showed IC50 values of 1.19 and 0.68 microM, respectively, and were much more potent than etoposide (IC50=78.4 microM), but similar to doxorubicin (IC50=2.67 microM). However their inhibitory activity on topoisomerase I was lower, and 8d and 8i showed IC50 values of 42.0 and 64.3 microM, respectively.  相似文献   

18.
A series of novel lapachol derivatives possessing indole scaffolds was designed and synthesized. The in vitro anti-proliferative activity of these novel compounds was evaluated in Eca109 and Hela cell lines. Almost all the tested compounds showed manifested potent inhibitory activity against the two tested cancer cell lines. Topo I-mediated DNA relaxation activity indicated that these novel compounds have potent Topoisomerase I inhibition activity. The most potent compounds 4n and 4k demonstrated more cytotoxicity than camptothecin and was comparable to camptothecin in inhibitory activities on Topoisomerase I in our biological assay. In addition, the Hoechst 33342 staining method also showed that the complex can induce Hela cell apoptosis.  相似文献   

19.
A systematic investigation of the S3 sub-pocket activity requirements was conducted. It was observed that linear and sterically small side chain substituents are preferred in the S3 sub-pocket for optimal renin inhibition. Polar groups in the S3-sub-pocket were not well tolerated and caused a reduction in renin inhibitory activity. Further, compounds with clog P's < or = 3 demonstrated a dramatic reduction in CYP3A4 inhibitory activity.  相似文献   

20.
The effect of chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), tauroursodeoxycholic (TUDCA), cholic (CA), ursocholic (UCA) acids, analogues of CDCA and UDCA with a cyclopropyl ring at C22, C23 (cypro-CDCA and cypro-UDCA) and 23-methylursodeoxycholic acid (MUDCA) on cholesterol 7 alpha-hydroxylase was studied in rat liver microsomes. Cypro-analogues consisted of a mixture of four diasteroisomers, while MUDCA was the racemic mixture of two enantiomers. Each steroid was added to liver microsomes at concentrations ranging from 10 to 200 microM. With the exception of UCA and CA, all the bile acids inhibited cholesterol 7 alpha-hydroxylase activity. The inhibition shown by cypro-CDCA and cypro-UDCA was stronger than that observed with the corresponding natural compounds. 22S,23S cypro-UDCA exhibited an inhibitory effect which was more pronounced than that of the diasteroisomer mixture. The isomer 22R,23S was less effective and decreased cholesterol 7 alpha-hydroxylase activity in a manner comparable to that of UDCA. The effect of CDCA, UDCA and the cyclopropyl analogues was also tested with respect to HMG-CoA reductase and acylCoA cholesterol acyltransferase (ACAT) activities. ACAT was stimulated by the isomer 22S,23S cypro-UDCA but not affected by the other bile acids. No effect was observed as regards HMG-CoA reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号