首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

2.
1. In canines and mustelides total vitamin A was 10-50 times higher compared to other species due to a high amount of retinyl esters (40-99% of total vitamin A) in blood plasma. The dominant vitamin A ester was in most species retinyl stearate. 2. In Ursidae, Procyonidae, Viveridae and Felidae, total vitamin A was much lower. When present, however, retinyl esters also represented 10-65% of total vitamin A in plasma. 3. Only retinol was detected in plasma of the family, Hyaenidae, and the suborder, Pinnipedia. 4. In maned wolf cubs it was found that retinol, retinyl esters and alpha-tocopherol increased with the age of the animals, reaching values comparable to adult animals at the age of 5 months.  相似文献   

3.
Serum retinol, retinyl palmitate, beta-carotene, cryptoxanthin, lutein, alpha-tocopherol and gamma-tocopherol were measured in 18 captive Humboldt penguins (Spheniscus humboldti) prior to and following the removal of Columbia River (CR) smelt (Thaleichthys pacificus) from the diet. Dietary vitamin A was reduced from 59.8 to 13.5 IU g-1 (dry matter basis) when CR smelt was removed from the diet. Minimal changes were noted in dietary vitamin E. Serum samples Without-CR smelt had significantly lower circulating retinol (1.19 +/- 0.09 vs. 1.94 +/- 0.08 micrograms ml-1) and retinyl palmitate (0.033 +/- 0.012 vs. 0.105 +/- 0.004 microgram ml-1) compared to samples With-CR. The Without-CR smelt diet resulted in increased serum alpha-tocopherol from 26.4 +/- 0.94 to 39.1 +/- 3.72 micrograms ml-1. More serum samples taken Without-CR smelt had detectable levels of gamma-tocopherol than those With-CR smelt. Serum lutein was higher for the samples taken Without versus With-CR smelt. Serum cryptoxanthin did not differ. beta-Carotene was not detected. Data indicate that high levels of dietary vitamin A can affect circulating levels of retinol, retinyl palmitate and vitamin E. Thus, dietary vitamin A and the interrelationship between vitamins A and E should be considered when assessing captive penguins.  相似文献   

4.
Since the yolk lipids of the king penguin (Aptenodytes patagonicus) are rich in n-3 fatty acids, which are potentially susceptible to peroxidative damage, the yolk contents and yolk-to-embryo transfer of antioxidants and lipid-soluble vitamins were investigated under conditions of natural incubation in the wild. The concentration of vitamin E in the unincubated egg was 155 microg/g wet yolk, of which 88% was alpha-tocopherol and the rest was gamma-tocopherol. Vitamin A (2.9 microg/g) was present in the yolk entirely as retinol; no retinyl esters were detected. Throughout the latter half of the incubation period, vitamins E and A were taken up from the yolk into the yolk sac membrane (YSM) and later accumulated in the liver, with vitamin A being transferred in advance of vitamin E. In the YSM, vitamin A was present almost entirely as retinyl ester, indicating that the free retinol of the yolk is rapidly esterified following uptake. Retinyl esters were also the predominant form in the liver. The retinyl esters of the liver and YSM displayed different fatty acid profiles. At hatching, the brain contained relatively little vitamin E (4.7 microg/g) compared to the much higher concentration in the liver (482.9 microg/g) at this stage. Ascorbic acid was not detected in the yolk but was present at a high concentration in the brain at day 27 (404.6 microg/g), decreasing to less than half this value by the time of hatching. This report is the first to delineate the yolk-to-embryo transfer of lipid-soluble vitamins for a free-living avian species. The yolk fatty acids of the king penguin provide an extreme example of potential oxidative susceptibility, forming a basis for comparative studies on embryonic antioxidant requirements among species of birds whose yolk lipids differ in their degree of unsaturation.  相似文献   

5.
The aim of this study was to investigate fatty acid and carotenoid profile as well as vitamin A (retinol and retinol esters) content in gull (Larus fucus) tissues. Palmitic (16:0) and stearic (18:0) fatty acids were major saturates in all the tissues studied. Oleic acid (18:1n-9) was the major monounsaturate in the tissue phospholipids varying from 11.9% (liver) up to 18.2% (lung). Arachidonic acid (20:4n-6) was the major unsaturate in the phospholipid fraction in all the tissues. Liver contained the highest total carotenoid concentration which was 5 and 7 fold higher compared to kidney and pancreas. In the liver beta-carotene was major carotenoid. In contrast, in all other tissues beta-carotene was minor fraction with lutein being major carotenoid. Zeaxanthin, canthaxanthin, beta-cryptoxanthin and echinenone were also identified in the gull tissues. Liver and kidney were characterised by the highest vitamin A concentrations (1067.5 and 867.5 microg/g, respectively). Retinol comprised from 55.3% (pancreas) down to 8% (kidney) of the total vitamin A but was not detected in the abdominal fat. Retinyl palmitate was the major retinyl ester in the liver, kidney and heart (44.2; 38.1 and 46.0% of total retinyl esters). In muscles and abdominal fat retinyl stearate was the major retinyl ester fraction. Therefore high proportions of beta-carotene were found in gull liver and peripheral tissues were enriched by lutein and zeaxanthin compared to the liver, a very high concentration of retinyl esters in the kidney was observed and tissue-specificity in retinyl ester proportions in peripheral tissues was found.  相似文献   

6.
Retinyl ester concentrations in plasma from fasting humans, rabbits and rats are usually negligible. In contrast, plasma from fasting dogs contains appreciable amounts of retinyl esters, associated almost entirely with the low-density lipoproteins. This study was undertaken to gather additional information about the nature and origin of canine retinyl ester-containing lipoproteins. We examined the metabolism of endogenous lipoprotein retinyl esters in adult mongrel dogs with moderate vitamin A deficiency. Four animals were fed a diet of oatmeal and tuna fish that provided only 4% of the vitamin A contained in their control rations (15 vs. 367% of the canine recommended daily intake). There was an initial rapid decline in plasma retinyl esters. However, measurable concentrations persisted in plasma for up to 1 year of restricted vitamin A intake. Total plasma retinyl ester concentrations after 6 months of vitamin A deprivation, extrapolated from best-fit monoexponential decay curves for each animal, ranged from 11 to 89% of control, suggesting that there was sustained secretion of retinyl esters from endogenous stores. Density gradient ultracentrifugation of plasma from fasting vitamin A-deprived dogs showed retinyl esters in the very-low- and low-density lipoproteins. After fat and vitamin A feeding retinyl esters appeared among the very-low-, intermediate- and low-density lipoproteins, consistent with the suggestion that chylomicron retinyl esters are first taken up by the liver, and then resecreted as density less than 1.006-1.063 g/ml lipoproteins. Maximal incorporation of dietary retinyl esters into low-density lipoproteins was not reached until 24-48 h. Intermediate-density and beta-migrating low-density lipoprotein retinyl esters were increased markedly in fasting animals maintained on cholesterol- and saturated fat-enriched diets. These observations provide further evidence for the proposal that the canine liver secretes retinyl ester-containing particles, in amounts governed by dietary composition and vitamin A content. What selective advantage this unusual transport pathway might provide is not apparent.  相似文献   

7.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

8.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

9.
All-trans-retinol reacts with methyl (2,3,4-tri-O-acetyl-1-bromo-1-deoxy-beta-D-glucopyran)uronate in the presence of Ag2CO3 to give the triacetate methyl ester of retinyl beta-glucuronide. Hydrolysis of this ester with sodium methylate in methanol gives retinyl beta-D-glucuronide in about 15% yield. The water-soluble retinyl beta-D-glucuronide was characterized by u.v.-visible, n.m.r. and mass spectra, by elemental analysis and by its susceptibility to hydrolysis by bacterial beta-glucuronidase. Retinyl beta-glucuronide, when administered intraperitoneally in saline (0.9% NaCl), supports well the growth of vitamin A-deficient rats.  相似文献   

10.
Approximately 80% of the body vitamin A is stored in liver stellate cells with in the lipid droplets as retinyl esters. In low vitamin A status or after liver injury, stellate cells are depleted of the stored retinyl esters by their hydrolysis to retinol. However, the identity of retinyl ester hydrolase(s) expressed in stellate cells is unknown. The expression of carboxylesterase and lipase genes in purified liver cell-types was investigated by real-time PCR. We found that six carboxylesterase and hepatic lipase genes were expressed in hepatocytes. Adipose triglyceride lipase was expressed in Kupffer cells, stellate cells and endothelial cells. Lipoprotein lipase expression was detected in Kupffer cells and stellate cells. As a function of stellate cell activation, expression of adipose triglyceride lipase decreased by twofold and lipoprotein lipase increased by 32-fold suggesting that it may play a role in retinol ester hydrolysis during stellate cell activation.  相似文献   

11.
Vitamin A status and turnover were examined in rats that had been exposed to chronic dietary treatment of 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), 1 mg/kg diet. HCB caused hepatic depletion and renal accumulation of vitamin A, and a 1.7-fold increase in the serum retinol concentration. Intravenously administered [3H]retinol bound to retinol binding protein-transthyretin complex (RBP-TTR complex) was used to study the dynamics of circulatory retinol in these rats. In HCB-treated rats, the plasma turnover rate of retinol was increased compared to vitamin A-adequate untreated controls. HCB caused a 50% reduction of total radioactivity in liver, and, except for 0.5 h after the [3H]retinol-RBP-TTR dose, the specific activity of the hepatic retinyl ester pool was greater compared to control rats. The kidneys of HCB-treated rats accumulated radioactivity in the retinyl ester fraction. HCB also caused a 50% reduction in adrenal radioactivity compared with control rats. Urinary and fecal excretion of radioactivity was 3-fold higher in HCB-treated rats as compared to controls. Our findings demonstrate that chronic HCB feeding results in expansion of plasma vitamin A mass, in changes of liver and kidney retinol and retinyl ester pool dynamics and in an increased metabolism of vitamin A.  相似文献   

12.
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 μM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and streate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59±3%, S.E.) and kidney (76±3%), with considerably lower overall activity in kidney (57–375 nmol/h per g of tissue) than in liver (394–1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 μg/dl, and of liver vitamin A concentrations from 0 to 32 μg/g. Pig liver retinyl ester hydrolase from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

13.
Vitamin A metabolism in the human intestinal Caco-2 cell line   总被引:2,自引:0,他引:2  
T C Quick  D E Ong 《Biochemistry》1990,29(50):11116-11123
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Highly purified sinusoidal (fat-storing, Kupffer and endothelial cells) and parenchymal cells were isolated to assess the cellular distribution of vitamin A in liver of adult vitamin A-sufficient rats. A modified simple procedure was developed for the purification of fat-storing cells from rat liver. This was achieved by a single centrifugation step in a two-layer density Nycodenz gradient. Endothelial and Kupffer cells were obtained from the same gradient and further purified by centrifugal elutriation. Reverse-phase HPLC analysis showed that fat-storing cells contained about 300-fold the amount of retinyl esters present in parenchymal cells on a mg cell protein basis. In fat-storing cells, the same retinyl esters, viz. retinyl palmitate, retinyl stearate and retinyl oleate, were present as in whole liver. It was also observed that, within 12 h after intravenous injection of chylomicron [3H]retinyl ester, most of the radioactivity had accumulated in the fat-storing cells. It is concluded that fat-storing cells are the main storage sites for vitamin A in rat liver.  相似文献   

15.
Nutritional status for six captive canid species (n=34) and four captive ursid species (n=18) were analyzed. The species analyzed included: African wild dog (Lycaon pictus), arctic fox (Alopex lagopus), gray wolf (Canis lupus), maned wolf (Chrysocyon brachyurus), Mexican wolf (Canis lupus baleiyi), red wolf (Canis rufus), brown bear (Ursus arctos), polar bear (Ursus maritimus), spectacled bear (Tremarctos ornatus), and sun bear (Ursus malayanus). Diet information was collected for these animals from each participating zoo (Brookfield Zoo, Fort Worth Zoo, Lincoln Park Zoological Gardens, and North Carolina Zoological Park). The nutritional composition of the diet for each species at each institution met probable dietary requirements. Blood samples were collected from each animal and analyzed for vitamin D metabolites 25(OH)D and 1,25(OH)(2)D, vitamin A (retinol, retinyl stearate, retinyl palmitate), vitamin E (alpha-tocopherol and gamma-tocopherol) and selected carotenoids. Family differences were found for 25(OH)D, retinol, retinyl stearate, retinyl palmitate and gamma-tocopherol. Species differences were found for all detectable measurements. Carotenoids were not detected in any species. The large number of animals contributing to these data, provides a substantial base for comparing the nutritional status of healthy animals and the differences among them.  相似文献   

16.
The objective of this study was to examine the in vitro hydrolysis of vitamin E esters (alpha-tocopheryl acetate, alpha-tocopheryl succinate and alpha-tocopheryl nicotinate) by pancreatic carboxyl ester hydrolase (CEH) at the concurrent presence of different bile acids at different concentrations. The assay was performed by measuring the amount of alpha-tocopherol released by porcine pancreatic juice upon addition to different solutions of alpha-tocopheryl esters, which were dispersed in bile acid mixed micelles at 37 degrees C, pH 7.4. The CEH activity was 10 U in the final assay, and the optimal concentration of cholate in this in vitro-system was determined to 30 mM for the hydrolysis of alpha-tocopheryl acetate. The hydrolysis of alpha-tocopheryl esters required presence of pancreatic juice and bile acids, and the results showed furthermore that the ability of pancreatic CEH towards hydrolysis of different alpha-tocopheryl esters increased with increasing lipophility, irrespective of the type or concentration of bile acid present in the assay. Likewise, retinyl palmitate was hydrolyzed at a faster rate than retinyl acetate. The structure of the bile acid influenced the rate of hydrolysis. Thus, cholate followed by glycodeoxy- and glycochenodeoxycholate were the most effective activators of CEH among the bile acids tested in this assay. The presence of gamma-tocopherol or all-trans-retinyl acetate in the assay showed a non-competitive inhibition of the hydrolysis rate of alpha-tocopheryl acetate.  相似文献   

17.
We aimed to provide basic data on the processing of vitamin A and E in the human gastrointestinal tract and to assess whether the size of emulsion fat globules affects the bioavailability of these vitamins. Eight healthy men received intragastrically two lipid formulas differing in their fat-globule median diameter (0.7 vs. 10. 1 microm. Formulas provided 28 mg vitamin A as retinyl palmitate and 440 mg vitamin E as all-rac alpha-tocopherol. Vitamins were measured in gastric and duodenal aspirates, as well as in chylomicrons, during the postprandial period. The gastric emptying rate of lipids and vitamin A and E was similar. The free retinol/total vitamin A ratio was not significantly modified in the stomach, whereas it was dramatically increased in the duodenum. The proportion of ingested lipid and vitamins was very similar in the duodenal content. The chylomicron response of lipids and vitamins was not significantly different between the two emulsions. Our main conclusions are as follows: 1) there is no significant metabolism of vitamin A and E in the human stomach, 2) the enzyme(s) present in the duodenal lumen is significantly involved in the hydrolysis of retinyl esters, and 3) the size of emulsion fat globules has no major effect on the overall absorption of vitamin A and E.  相似文献   

18.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(19):5809-5818
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.  相似文献   

19.
For vertebrate development, vitamin A (all-trans retinol) is required in quantitative different amounts and spatiotemporal distribution for the production of retinoic acid, a nuclear hormone receptor ligand, and 11-cis retinal, the chromophore of visual pigments. We show here for zebrafish that embryonic retinoid homeostasis essentially depends on the activity of a leci-thin:retinol acyltransferase (Lratb). During embryogenesis, lratb is expressed in mostly non-overlapping domains opposite to retinal dehydrogenase 2 (raldh2), the key enzyme for retinoic acid synthesis. Blocking retinyl ester formation by a targeted knock down of Lratb results in significantly increased retinoic acid levels, which lead to severe embryonic patterning defects. Thus, we provide evidence that a balanced competition between Lratb and Raldh2 for yolk vitamin A defines embryonic compartments either for retinyl ester or retinoic acid synthesis. This homeostatic mechanism dynamically adjusts embryonic retinoic acid levels for gene regulation, concomitantly sequestering excess yolk vitamin A in the form of retinyl esters for the establishment of larval vision later during development.  相似文献   

20.
K M Rigtrup  D E Ong 《Biochemistry》1992,31(11):2920-2926
Retinol esterified with long-chain fatty acids is a common dietary source of vitamin A. Hydrolysis of these esters in the lumen of the small intestine is required prior to absorption. Bile salt-stimulated retinyl esterase activity was present with purified rat intestinal brush border membrane, with the maximum rate of ester hydrolysis at approximately pH 8, the physiological luminal pH. Taurocholate, a trihydroxy bile salt, stimulated hydrolysis of short-chain fatty acyl retinyl esters more than hydrolysis of long-chain fatty acyl esters. Deoxycholate, a dihydroxy bile salt, primarily stimulated hydrolysis of long-chain esters. Calculated Kms of 0.74 microM for retinyl palmitate (16:0) hydrolysis and 9.6 microM for retinyl caproate (6:0) hydrolysis suggested the presence of two separate activities. Consistent with that, the activity responsible for retinyl caproate hydrolysis could be inactivated to a greater degree than retinyl palmitate hydrolysis by preincubation of the brush border membrane at 37 degrees C for extended times. Brush border membrane from animals who had undergone common duct ligation 48 h prior to tissue collection showed little ability to hydrolyze retinyl caproate but retained 70% of retinyl palmitate hydrolytic activity, compared to sham-operated controls. Thus, two distinguishable retinyl esterase activities were recovered with purified brush border membranes. One apparently originated from the pancreas, was stimulated by trihydroxy bile salts, and preferentially hydrolyzed short-chain retinyl esters, properties similar to cholesterol ester hydrolase, known to bind to the brush border. The other was intrinsic to the brush border, stimulated by both trihydroxy and dihydroxy bile salts, and preferentially hydrolyzed long-chain retinyl esters, providing the majority of activity of the brush border against dietary retinyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号