首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cryopreservation of female gametes is still an open problem because of their structural sensitivity to the cooling-and-freezing process and to the exposure to cryoprotectants. The present work was aimed to study the effect of vitrification on immature bovine oocytes freed of cumulus cell investment before freezing. To verify the feasibility and efficiency of denuded oocyte (DO) cryopreservation, the cytoplasmic alterations eventually induced either by cell removal or by the vitrification process were analyzed. In particular, the migration of cortical granules and Ca++ localization were studied. In addition, the localization and distribution of microtubules and microfilaments in immature fresh and vitrified DOs were evaluated. Finally, to establish whether the removal of cumulus cells influenced developmental competence, DOs were thawed after vitrification, matured in vitro and fertilized; then presumptive zygotes were cultured to reach the blastocyst stage. The results indicate that mechanical removal of cumulus cells from immature bovine oocytes does not affect their maturation competence but reduces the blastocyst rate when compared with intact cumulus oocyte complexes (COCs). The findings indicate further that the vitrification process induces changes of cytoplasmic components. However, the composition of the manipulation medium used to remove cumulus cells plays a crucial role in reducing the injuries caused by cryopreservation in both cytoplasmic and nuclear compartments. In fact, the presence of serum exerts a sort of protection, significantly improving both oocyte maturation and blastocyst rates. In conclusion, we demonstrate that denuded immature oocytes can be vitrified after cumulus cells removal and successfully develop up, after thawing, to the blastocyst stage, following in vitro maturation and fertilization.  相似文献   

2.
The present study was conducted to evaluate the function of cumulus cells during bovine IVF Oocytes within cumulus-oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.  相似文献   

3.
Shi L  Yue W  Zhang J  Lv L  Ren Y  Yan P 《Animal reproduction science》2009,113(1-4):299-304
The objective of this study was to investigate the influence of ovarian cortex cells (OCCs) monolayers on the nuclear maturation of sheep oocytes with or without cumulus cells during IVM. Sheep ovaries collected from a local abattoir were transported to the laboratory in warm PBS containing antibiotics within 2-3h after collection. Cumulus-oocyte complexes (COCs) were obtained by aspiration and evaluated in a pre-incubated Hepes-modified TCM 199 medium. The selected COCs were randomly divided into six treatment groups: group 1 (control group): oocytes enclosed by cumulus cells were cultured in maturation medium; group 2 (co-culture group): oocytes enclosed by cumulus cells co-cultured with OCCs monolayers; group 3 (conditioned group): oocytes enclosed by cumulus cells were cultured in OCCs-conditioned medium; group 4 (denuded group): denuded oocytes were cultured in the maturation medium; group 5 (denuded co-culture group): denuded oocytes co-cultured with OCCs monolayers in maturation medium; group 6 (denuded conditioned group): denuded oocytes were cultured in OCCs-conditioned medium. After maturation for 24h, the oocytes in each treatment group were fixed, stained and the nuclear status of the oocytes were assessed under an inverted microscope. The highest percentage of metaphase II (M-II) stage oocyte was observed in group 2 (86.3%) and the lower percentage was observed in the denuded groups (group 4-6). The removal of cumulus cells dramatically decreased the percentage of M-II stage oocyte. The comparison of the nuclear maturation status in group 4-6 showed that the co-culture of oocyte with OCCs monolayers resulted in progression to completing the GVBD stage to reach the M-II stage. The results demonstrated that the presence of OCCs could positively influence the meiotic resumption and progression of sheep oocytes during IVM.  相似文献   

4.
To determine the role of cumulus cells in oocyte maturation, we carried out an investigation on the effects of addition of cumulus cells to the maturation medium on the developmental competence of corona-enclosed oocytes and oocytes denuded from their somatic cells. The addition of cumulus cell (1.6 x 10(6) cells/mL) improved the development of bovine corona-enclosed oocytes, however, addition of a similar number of cumulus cells as cumulus-oocyte-complexes (COCs, cumulus cell density: 4.2 x 10(6) cells/mL) had no effect on the development of oocytes denuded from their somatic cells. To determine if corona-enclosed oocytes can obtain developmental competence without the addition of extra cumulus cells, the effects of cell density during in vitro maturation on the developmental competence were studied. A density of 1.6 to 3.2 x 10(6) cumulus cells/mL was the most effective for in vitro maturation of oocytes with intact gap junctions. The effects of the medium conditioned by COCs on the developmental competence of oocytes was also examined. It was demonstrated that COC-conditioned medium improved the development of bovine oocytes to the blastocyst stage. These data suggest that the developmental competence of bovine oocytes surrounded with corona cells is supported in a cell density-dependent manner in the maturation medium. In addition, the data indicate that cumulus cells benefit bovine oocyte development either by secreting soluble factors which induce developmental competence or by removing an embryo development-suppressive component from the medium.  相似文献   

5.
In the mare only a limited number of oocytes can be successfully collected in vivo, so that when large numbers of oocytes are needed for experimentation, ovaries harvested from slaughtered mares must be used. The resulting temperature changes and time intervals mandated by handling and transport of ovaries from the slaughterhouse to the laboratory adversely affect the rate of oocyte recovery and their quality after IVF and maturation. We chose to study the effect of temperature and time in transit of excised ovaries by evaluating rate of oocyte recovery, nuclear maturation stage reached before, and cleavage rate reached after IVF, following short (1.5 to 4 h) and long (6 to 8 h) storage. Temperatures in the storage container decreased from 37-C to 32 degrees and 27.5 degrees C during the short and long interval, respectively. The cumulus-oocytes complexes (COCs) were classified as having a compact cumulus, completely or partially surrounding the oocyte (compact); those having only a corona radiata surrounding the oocyte (corona); those having a completely or partially expanded cumulus, showing a cellular or sparsely cellular, gelatinous cloud around the oocyte (expanded); and those that were completely denuded of both cumulus and corona cells (denuded). All COCs, except the denuded ones, which were discarded, were matured in vitro for 30 h at 38.5 degrees C in 5% CO2. The recovery rate of oocytes was significantly higher after long vs short storage (48 vs 35%; P < 0.01), but the distribution of the collected COCs into the 4 classes was not affected by the storage time. After in vitro maturation nuclear maturity was not affected by the storage time, but oocytes with intact cytoplasmic membranes were more frequently found after short than after long storage (54 vs 34%; P = 0.07), and fully matured oocytes were more often seen with intact membrane (P < 0.01). Moreover, oocytes with intact membranes in metaphase II (MII) were associated with short storage intervals and the corona COC class, while damaged membranes and incomplete maturation were associated with the long storage and the compact COC class.  相似文献   

6.
Romar R  Coy P  Ruiz S  Gadea J  Rath D 《Theriogenology》2003,59(3-4):975-986
This study was designed to evaluate the effects of adding porcine oviductal epithelial cell (POEC) monolayers before or during the fertilization of denuded or cumulus-enclosed oocytes, in terms of fertilization results and subsequent embryo development. The variables determined were: penetration rate, mean number of spermatozoa per oocyte, male pronucleus formation rate, monospermy rate, cleavage rate after 48 h of fertilization, blastocyst rate, and mean number of nuclei per blastocyst. We used cumulus-free and cumulus-enclosed oocytes preincubated or fertilized in the presence of POEC, once the purity in epithelial cells of these cultures had been assessed. All the experiments involved the use of frozen-thawed epididymal spermatozoa to avoid replicate variability. The POEC cultures prepared showed a high proportion of epithelial cells (over 95%). Preincubation of oocytes with POEC before fertilization showed no effects on the fertilization variables determined. In contrast, during IVF under our experimental conditions, these cells attached to the cumulus cells and their interaction had a significant effect on some of the fertilization variables analyzed. The presence of POEC and cumulus cells during IVF increased oocyte penetrability. Moreover, in the absence of POEC, cumulus cells resulted in a reduced monospermy rate. On subsequent embryo culture, a lower cleavage and blastocyst formation rate were recorded when the oocytes had been preincubated with POEC before IVF.  相似文献   

7.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

8.
The aim of this study is to identify the effect of cumulus cells removal prior to the in vitro fertilization of matured bovine oocytes on cleavage rate. Denuded, matured oocytes were fertilized in presence or absence of loose cumulus cells, cumulus cell conditioned IVF medium (CCCM), charcoal-treated CCCM and charcoal-treated CCCM supplemented with progesterone at a final concentration of 150 ng/ml. After 18 h of incubation with sperm, the presumptive embryos were cultured on a BRL monolayer and the percentage of cleaved embryos was evaluated on Day 4. Removal of cumulus cells prior to IVF significantly reduced the cleavage rate (25% for denuded oocytes versus 56% for cumulus-oocyte complexes (COCs)). The addition of loose cumulus cells partially restored the effect of denudation (cleavage rate: 37% for denuded oocytes supplemented with loose cumulus cells versus 27% for denuded oocytes and 58% for COCs). CCCM also had a positive effect on the cleavage rate of oocytes denuded prior to IVF (36% for denuded oocytes fertilized in CCCM versus 14% for denuded oocytes). Treating the CCCM with charcoal resulted in complete loss of its effect on cleavage rate (18% for denuded oocytes fertilized in charcoal-treated CCCM versus 34% for denuded oocytes fertilized in CCCM). The addition of progesterone to charcoal-treated CCCM partially restored the reduction of the cleavage rate caused by charcoal treatment (27% for denuded oocytes fertilized in charcoal-treated CCCM supplemented with progesterone versus 14% for denuded oocytes fertilized in charcoal-treated CCCM and 36% for denuded oocytes fertilized in CCCM). In conclusion, removal of cumulus cells prior to IVF adversely affects the cleavage rate through loss of a factor secreted by these cells. This factor probably is progesterone.  相似文献   

9.
Cumulus oophorus cells have been implicated in the regulation of female gamete development, meiotic maturation, and oocyte-sperm interaction. Nevertheless, the specific role of cumulus cells (CCs) during the final stages of oocyte maturation and fertilization processes still remains unclear. Several studies have been conducted in order to clarify the role of follicular cells using culture systems where denuded oocytes (DOs) were co-cultured with isolated CCs, or in the presence of conditioned medium. However, those attempts were ineffective and the initial oocyte competence to become a blastocyst after fertilization was only partially restored. Aim of the present study was to analyze the effect of the interactions between somatic cells and the female gamete on denuded oocyte developmental capability using a system of culture where CCs were present as dispersed CCs or as intact cumulus-oocyte complexes (COCs) in co-culture with oocytes freed of CC investment immediately after isolation from the ovary. Moreover, we analyzed the specific role of cyclic adenosine 3'-5' monophosphate (cAMP) and glutathione (GSH) during FSH-stimulated maturation of denuded oocyte co-cultured with intact COCs. Our data confirm that denuded oocyte has a scarce developmental capability, and the presence of dispersed CCs during in vitro maturation (IVM) does not improve their developmental competence. On the contrary, the co-presence of intact COCs during denuded oocyte IVM partially restores their developmental capability. The absence of CCs investment causes a drop of cAMP content in DOs at the beginning of IVM and the addition of a cAMP analog in the culture medium does not restore the initial oocyte developmental competence. The relative GSH content of denuded oocyte matured in presence of intact COCs is consistent with the partial recovery of their developmental capability. However, the complete restoration of a full embryonic developmental potential is achieved only when DOs are co-cultured with intact COCs during both IVM and in vitro fertilization (IVF). Our results suggest that the direct interaction between oocyte and CCs is not essential during IVM and IVF of denuded oocyte. We hypothesize that putative diffusible factor(s), produced by CCs and/or by the crosstalk between oocyte and CCs in the intact complex, could play a key role in the acquisition of developmental competence of the denuded female gamete.  相似文献   

10.
Saeki K  Nagao Y  Hoshi M  Kainuma H 《Theriogenology》1994,42(7):1115-1123
The present study was conducted to examine the effects of cumulus cells on sperm capacitation, acrosome reaction and penetration of bovine oocytes in vitro in a protein-free medium. In vitro matured oocyte-cumulus complexes (OCCs) and denuded oocytes were co-incubated with spermatozoa in the medium with or without bovine serum albumin (BSA). Higher fertilization rates were obtained in the OCCs (92 and 89%, respectively) than denuded oocytes (57 and 6%, respectively) in the medium with or without BSA (P<0.01). Higher proportion of the denuded oocytes were fertilized in the medium with BSA (57%) than without BSA (6%; P<0.01). These results suggest that the cumulus cells are more effective for increasing fertilization rate than BSA (P<0.05). Both the percentages of capacitated and acrosome-reacted spermatozoa incubated for 4 h with isolated cumulus cells were not significantly different in the medium without cumulus cells in the presence or absence of BSA. The denuded oocytes were inseminated with isolated cumulus cells taken from OCCs matured with or without hormones, follicle stimulating hormone (FSH) and estradiol-17beta (E(2)), and from immature OCCs in a protein-free medium. Presence of the cumulus cells matured with hormones enhanced sperm penetration of denuded oocytes more effectively (81%) than either of the cells matured without hormones (41%) or the immature cells (26%; P<0.01). The conditioned medium of cumulus cells matured with hormones was not effective for sperm penetration of denuded oocytes (2%), while a high proportion (82%) of the oocytes were fertilized when they were inseminated with isolated cumulus cells (P<0.01). In conclusion, the presence of cumulus cells matured with FSH and E(2) was effective for sperm penetration but not for sperm capacitation or acrosome reaction.  相似文献   

11.
12.
Porcine cumulus oocyte complexes (COCs) were cultured together in 10-microliters droplets of culture medium. When 10 COCs were cultured for 24 h, germinal vesicle breakdown (GVBD) occurred in 81% of them. When more COCs (20 or 40) were put into the same volume of medium the frequency of GVBD gradually decreased. This inhibition was not observed in denuded oocytes. The process of GVBD was adversely influenced when 10 COCs were cultured in cumulus-preconditioned medium. It is concluded that porcine cumulus cells produced a factor inhibiting GVBD. After removing the inhibitory block and extensive washing, GVBD of arrested oocytes was significantly accelerated. The addition of LH or heparin only partially overcame the inhibitory action. This factor produced by porcine cumulus cells negatively influenced maturation of bovine oocytes; however, a similar effect was not demonstrated in the mouse. Our results suggest that a high concentration of porcine cumulus cells exerts a quantitative inhibitory effect upon GVBD of porcine and cattle oocytes cultured in vitro.  相似文献   

13.
The present study was designed 1) to examine the influence of cumulus cells, ovary storage time and oocyte size on the penetrability of immature pig oocytes, and 2) to investigate the effect of 2 methods of treating the semen from different boars on the inter-assay variability of homologous in vitro penetration tests of boar sperm fertility. In Experiment 1, cumulus oocyte complexes, oocytes with spontaneous loss of the cumulus cells during collection, and oocytes mechanically stripped of cumulus cells were used. No differences were observed in oocyte penetrability among the 3 types of oocyte, although mechanical removal of the cumulus caused an increase (P < 0.005) in the degeneration rate compared with the other oocyte types. In Experiment 2, the oocytes were recovered from ovaries kept in PBS (30 degrees C) for 2, 4 or 6 h after slaughter of prepuberal gilts. Ovary storage did not modify the penetrability of oocytes but increased (P < 0.02) their degeneration rates. In Experiment 3, the diameters of fresh oocytes were determined after co-incubation with spermatozoa. They were classified into 4 groups according to diameter: A) < 105 microm, B) 105-115 microm, C) 116-120 microm and D) > 120 microm. Oocytes from Groups C and D exhibited higher (P < 0.05) penetrability than oocytes from the other groups. In Experiment 4, stored, diluted spermatozoa from 4 boars were pretreated by centrifugation at 50 x g for 3 min and subsequent concentration of the supernatants at 1,200 x g for 3 min. The pellets were treated (washed twice and preincubated for 40 minutes) before co-incubation with immature oocytes or used directly as untreated samples (unwashed and non-preincubated). A boar effect (P < 0.001) was evident for the parameters of in vitro penetration, independently of sperm treatment. When the oocytes were inseminated with untreated spermatozoa, the effects of the replicate and the boar-by-replicate interaction on the variability in oocyte penetrability were not significant. The results of this study indicate that the use of standardized immature pig oocytes and stored untreated, diluted spermatozoa can provide a useful method for optimizing the homologous in vitro penetration (hIVP) assay of boar fertility.  相似文献   

14.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

15.
This study was designed to determine the effect of co-culture with porcine oviductal epithelial cell (POEC) monolayers on in vitro fertilization of pig oocytes. The in vitro penetrability of mature (experiment 1) or immature (experiment 2) oocytes was studied in presence or absence of POEC during IVF with fresh semen. In experiment 3, boar and POEC effects were analyzed but in this case with frozen-thawed spermatozoa. In experiment 4, the spermatozoa were pre-incubated before IVF with or without POEC in order to assess their effect on IVF sperm-related parameters. In experiment 5, the effect of POEC was studied by co-culturing them with oocytes before IVF to determine if monospermy was improved. The results showed that high sperm concentration and POEC increase oocyte penetrability (P<0.01) and decrease monospermy rate (P<0.01), in both mature and immature oocytes (P<0.01) with fresh semen and a 18 h culture time. With frozen semen was detected a boar and POEC effect (P<0.01) on penetration rate. The sperm pre-culture 2 h with POEC also resulted in an increase of sperm penetration in terms of number of sperm per oocyte (P<0.01) and this treatment did not increase monospermy when contact time between gametes was limited to 6 h although monospermy was higher when POEC were present during IVF. Finally, exposure of oocytes to POEC for 4 h before IVF facilitated monospermic penetration to over 70% (P<0.01). In conclusion, the use of POEC in porcine IVF systems provides the possibility of working with low sperm concentrations and the effect of POEC on monospermy depends on sperm concentration, boar and contact time between gametes. Moreover, the exposure of oocytes to POEC before IVF improves the rate of monospermy.  相似文献   

16.
Glucose is an essential nutrient for mammalian cells. Emerging evidence suggests that glucose within the oocyte regulates meiotic maturation. However, it remains controversial as to whether, and if so how, glucose enters oocytes within cumulus-oocyte complexes (COCs). We used a fluorescent glucose derivative (6-NBDG) to trace glucose transport within live mouse COCs and employed inhibitors of glucose transporters (GLUTs) and gap junction proteins to examine their distinct roles in glucose uptake by cumulus cells and the oocyte. We showed that fluorescent glucose enters both cumulus-enclosed and denuded oocytes. Treating COCs with GLUT inhibitors leads to simultaneous decreases in glucose uptake in cumulus cells and the surrounded oocyte but no effect on denuded oocytes. Pharmacological blockade of of gap junctions between the oocyte and cumulus cells significantly inhibited fluorescent glucose transport to oocytes. Moreover, we find that both in vivo hyperglycemic environment and in vitro high-glucose culture increase free glucose levels in oocytes via gap junctional channels. These findings reveal an intercellular pathway for glucose transport into oocytes: glucose is taken up by cumulus cells via the GLUT system and then transferred into the oocyte through gap junctions. This intercellular pathway may partly mediate the effects of high-glucose condition on oocyte quality.  相似文献   

17.
《Theriogenology》1996,45(8):1479-1489
The objective of this study was to examine the effect of cumulus cell removal from cumulusoocyte complexes (COCs) on meiotic progression. In Experiments 1, 2 and 3, pig COCs were cultured for 16, 20 and 24 h, respectively. The cumulus cells were then removed, and the denuded oocytes were incubated in fresh medium for another 32 h in Experiment 1, for 28 h in Experiment 2 and for 24 h in Experiment 3. In Experiment 4, the denuded oocytes and COCs were co-cultured in a drop of fresh medium from 24 h of cultivation to the end of the culture period (48 h). Removal of the cumulus cells after 16 h of cultivation had no effect on the proportions of oocytes both undergoing germinal vesicle breakdown (GVBD) and reaching MII. When the denuded oocytes were further cultured for 24 h, following the removal of their cumulus cells after 24 h of cultivation, the proportion of oocytes undergoing GVBD was significantly higher (90%, P < 0.05) than that of oocytes that were continuously cultured for 48 h without removing the cumulus cells (80%). Removal of the cumulus cells after 20 and 24 h of incubation produced a significant increase in the proportion of oocytes reaching the MII stage (84%, P < 0.05 and 76%, P < 0.01, respectively) as compared with COCs cultured continuously for 48 h without removing cumulus cells (71% and 55%, respectively). The maturation rate of denuded oocytes co-cultured with COCs for the second 24 h of cultivation was comparable to that of denuded oocytes cultured without COCs (77 and 74%, respectively). From these results, it was concluded that cumulus cells surrounding oocytes suppressed meiosis of both the GVBD process and progression from GVBD to MII in pig oocytes cultured in vitro, and that the suppressive factor in meiotic progression produced by the cumulus cells might be transferred to the oocytes through gap junctions rather than through the medium.  相似文献   

18.
Cumulus cells of the oocyte play important roles in in vitro maturation and subsequent development. One of the routes by which the factors are transmitted from cumulus cells to the oocyte is gap junctional communication (GJC). The function of cumulus cells in in vitro maturation of porcine oocytes was investigated by using a gap junction inhibitor, heptanol. Cumulus-oocyte complexes (COCs) were collected from the ovaries of slaughtered gilts by aspiration. After selection of COCs with intact cumulus cell layers and uniform cytoplasm, they were cultured in a medium with 0, 1, 5, or 10 mM of heptanol for 48 h. After culture in vitro, one group of oocytes was assessed for nuclear maturation and glutathione (GSH) content, and another group was assigned to in vitro fertilization and assessed for the penetrability of oocytes and the degree of progression to male pronuclei (MPN) of penetrated spermatozoa. At the end of in vitro maturation, the oocytes reached metaphase II at a high rate (about 80%) regardless of the presence of heptanol at various concentrations. Cumulus cell expansion and the morphology of oocytes cultured in the medium with heptanol were similar to those of control COCs matured without heptanol. The amount of GSH in cultured oocytes tended to decrease as the concentration of heptanol in the medium was increased. Although there was no difference in the rates of penetrated oocytes cultured in media with different concentrations of heptanol, the proportion of oocytes forming MPN after insemination decreased significantly (P < 0.01) at all concentrations tested. A higher rate of sperm (P < 0.01) failed to degrade their nuclear envelopes after penetration into the oocytes that were treated with heptanol. GJC between the oocyte and cumulus cells might play an important role in regulating the cytoplasmic factor(s) responsible for the removal of sperm nuclear envelopes as well as GSH inflow from cumulus cells.  相似文献   

19.
The aim of this work was to evaluate whether providing a support of cumulus cells during IVF of buffalo denuded oocytes submitted to vitrification-warming enhances their fertilizing ability. In vitro matured denuded oocytes were vitrified by Cryotop in 20% EG + 20% of DMSO and 0.5 M sucrose and warmed into decreasing concentrations of sucrose (1.25 M-0.3M). Oocytes that survived vitrification were fertilized: 1) in the absence of a somatic support (DOs); 2) in the presence of bovine cumulus cells in suspension (DOs+susp); 3) on a bovine cumulus monolayer (DOs+monol); and 4) with intact bovine COCs in a 1:1 ratio (DOs+COCs). In vitro matured oocytes were fertilized and cultured to the blastocyst stage as a control.An increased cleavage rate was obtained from DOs+COCs (60.9%) compared to DOs, DOs+susp (43.6 and 38.4, respectively; P < 0.01) and DOs+monol (47.5%; P < 0.05). Interestingly, cleavage rate of DOs+COCs was similar to that of fresh control oocytes (67.8%). However, development to blastocysts significantly decreased in all vitrification groups compared to the control (P < 0.01).In conclusion the co-culture with intact COCs during IVF completely restores fertilizing capability of buffalo denuded vitrified oocytes, without improving blastocyst development.  相似文献   

20.
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus?oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two‐cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号