首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human erythrocyte does not behave as a perfect osmometer that is its volume does not change as predicted with the change of the tonicity of the medium, as if there was a fraction of the cell water not participating in the osmotic exchange. A mechanism of control of the erythrocyte shape has been previously proposed in which Band 3 (AE1), the protein anion exchanger of Cl(-) and HCO(3)(-), plays a central role. Specifically, decrease and increase of the ratio of its outward-facing conformation and inward-facing conformation (Band 3(o)/Band 3(i)) contract and relax the membrane skeleton, thus favoring echinocytosis and stomatocytosis, respectively. The equilibrium Band 3(o)/Band 3(i) ratio is determined by the Donnan equilibrium ratio of anions and protons, increasing with it (r=Cl(i)(-)/Cl(o)(-)=HCO 3(i)(-)/HCO 3(o)(-)=H(o)(+)/H(i)(+)). The Donnan ratio is influenced by the erythrocyte transport and metabolic activities. The volume change of the human erythrocyte alters the skeleton conformation as it is accompanied by a change of the membrane curvature. Thus, the mechanism could be a hypothesis for explaining the behavior of the human erythrocyte as an imperfect osmometer since the Donnan ratio controls the Band 3(o)/Band 3(i) ratio which controls the volume by a control of the degree of contraction or relaxation of the skeleton. Predictions made by the hypothesis on the Ponder's coefficient R' values in the presence of sucrose or Band 3 substrates slowly transported as well as on the participation of Band 3 in the osmotic hemolysis appear to be corroborated by previous observations. If the hypothesis was valid, it would follow that there is a pressure gradient across the erythrocyte membrane. The equilibrium volume is antagonistically determined by the Donnan ratio per se and Band 3. Band 3, rather than the ratio of surface-to-volume, primarily controls the osmotic hemolysis.  相似文献   

2.
C C Devlin  C M Grisham 《Biochemistry》1990,29(26):6192-6203
The interaction of nucleotides and nucleotide analogues and their metal complexes with Mn2+ bound to both the latent and dithiothreitol-activated CF1 ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and 1H and 31P nuclear relaxation measurements. Titration of both the latent and activated Mn(2+)-CF1 complexes with ATP, ADP, Pi, Co(NH3)4ATP, Co(NH3)4ADP, and Co(NH3)4AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF1 by Co(NH3)4AMPPCP with respect to CaATP. The data are consistent with a Ki for Co(NH3)4AMPPCP of 650 microM, in good agreement with a previous Ki of 724 microM for Cr(H2O)4ATP [Frasch, W., & Selman, B. (1982) Biochemistry 21, 3636-3643], and a best fit KD of 209 microM from the water PRR measurements. 1H and 31P nuclear relaxation measurements in solutions of CF1 and Co(NH3)4AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn2+. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn2+ site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the beta-P and gamma-P of the substrate. The distances from Mn2+ to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.  相似文献   

3.
The temperature-dependence of water diffusion across human erythrocyte membrane was studied on isolated erythrocytes and resealed ghosts by a doping nuclear magnetic resonance technique. The conclusions are the following: (1) The storage of suspended erythrocytes at 2 degrees C up to 24 h or at 37 degrees C for 30 min did not change the water exchange time significantly, even if Mn2+ was present in the medium. This indicates that no significant penetration of Mn2+ is taking place under such conditions. (2) In case of cells previously incubated at 37 degrees C for longer than 30 min with concentrations of p-chloromercuribenzene sulfonate (PCMBS) greater than 0.5 mM, the water-exchange time gradually decreased if the cells were stored in the presence of Mn2+ for more than 10 min at 37 degrees C. (3) When the Arrhenius plot of the water-exchange time was calculated on the basis of measurements performed in such a way as to avoid a prolonged exposure of erythrocytes to Mn2+ no discontinuity occurred, regardless of the treatment with PCMBS. (4) No significant differences between erythrocytes and resealed ghosts regarding their permeability and the activation energy of water diffusion (Ea,d) were noticed. The mean value of Ea,d obtained on erythrocytes from 35 donors was 24.5 kJ/mol. (5) The value of Ea,d increased after treatment with PCMBS, in parallel with the percentage inhibition of water diffusion. A mean value of 41.3 kJ/mol was obtained for Ea,d of erythrocytes incubated with 1 mM PCMBS for 60 min at 37 degrees C and 28.3 kJ/mol for ghosts incubated with 0.1 mM PCMBS for 15 min, the values of inhibition being 46% and 21% respectively.  相似文献   

4.
J M Stewart  C M Grisham 《Biochemistry》1988,27(13):4840-4848
1H nuclear magnetic relaxation measurements have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C. M. (1982) Biochemistry 21, 6979; Gantzer, M. L., Klevickis, C., & Grisham, C. M. (1982) Biochemistry 21, 4083] and that Mn2+ bound to a single, high-affinity site on the ATPase can be an effective paramagnetic probe for nuclear relaxation studies of the Na,K-ATPase [O'Connor, S. E., & Grisham, C. M. (1979) Biochemistry 18, 2315]. From the paramagnetic effect of Mn2+ bound to the ATPase on the longitudinal relaxation rates of the protons of Co(NH3)4ATP at the substrate site (at 300 and 361 MHz), Mn-H distances to seven protons on the bound nucleotide were determined. Taken together with previous 31P nuclear relaxation data, these measurements are consistent with a single nucleotide conformation at the active site. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. The glycosidic torsion angle is 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The bound Mn2+ lies above and in the plane of the adenine ring. The distances from Mn2+ to N6 and N7 are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The binding of cations by parvalbumins was studied by the proton relaxation enhancement (PRE) method using the paramagnetic probes Gd(III) and Mn(II). Gd(III) appears as a specific probe of the primary sites CD and EF with the following binding parameters: n = 2, KdGd = 0.5 x 10(-11) M and epsilon b = 2.3. The low value of epsilon b is the result of a nearly complete dehydration of the protein bound ions. Competition experiments between Gd(III) and various diamagnetic cations show the following order of affinity for the EF and CD sites: Mg2+ less than Zn2+ less than Sr2+ less than Ca2+ less than Cd2+ less than La3+ less than or equal to Gd3+. Mn 2+ is a specific probe of a secondary site with the following binding parameters: n = 1, KdMn = 0.6 x 10(-3) M and epsilon b = 17. The high value of epsilon b suggests that the protein bound Mn(II) has retained most of its hydration shell. Competition experiments between (Mn(II) and different cations show similar affinities for this site: Ca2+ less than or equal to Mg2+ less than or equal to Cd2+ less than or equal to Mn2+. This secondary site is located near the EF primary site.  相似文献   

6.
Erythrocytes suspended at a low hematocrit in a non-buffered isotonic saline change from biconcave discs to spheres between glass surfaces of a slide and of a coverslip with the echinocyte as an intermediate. A pH increase is a major factor responsible for this disc-sphere transformation or glass effect. It is also observed between surfaces made of various polymers and of mica provided that the distance between them is controlled (0.1 mm). The glass effect is antagonized by serum, plasma, serum albumin, ammonium salts and CO2. It is not observed above a 1-2% hematocrit, but is enhanced by gamma-globulins. The sites of reappearance of the spicules are the same and the order of their disappearance is the inverse of the order of their reappearance during the repetitive cycle of the disc-sphere transformation and reversal when a small glass rod is alternatively approached near a site on the erythrocyte surface and withdrawn. A mechanism of erythrocyte shape control has been previously hypothesized in which Band 3 (AE1), the anion exchange protein, plays a central role. Specifically, decrease and increase of the ratio of its outward-facing conformation (Band 3o) and inward-facing conformation (Band 3i) contract and relax the membrane skeleton, promoting the echinocytosis and stomatocytosis, respectively. The Band 3o/Band 3i equilibrium ratio is determined by the Donnan equilibrium ratio of Cl-, HCO3- and H+ (r=Cl(i)-/Cl(o)-=HCO3i-/HCO3o-=Ho+/Hi+), increasing with it. The mechanism could explain by a change of the Donnan ratio the above observations with the assumptions that polymers are permeable to CO2 and that an unstirred layer slows the propagation of the change occurring at the site of approach of the glass rod to peripheral sites. The presence of HCO3- in serum or plasma may be the basis for the absence of the glass effect in these fluids.  相似文献   

7.
The interaction of ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.  相似文献   

8.
A Sadhu  J A Magnuson 《Biochemistry》1989,28(8):3197-3204
The stoichiometry of Mn2+ binding to concanavalin A was found to be influenced by temperature, pH, and the presence or absence of saccharide. Demetalized concanavalin A binds one Mn2+ (S1 site) at 5 degrees C, pH 6.5, and two Mn2+ at 25 degrees C (S1 and S2 sites). The association constants for Mn2+ are 6.2 x 10(5) and 3.7 x 10(4) M-1 for the S1 and S2 sites, respectively, at 25 degrees C. Concanavalin A with one Mn2+ bound per monomer remains in an open conformation and exhibits a relatively high water proton relaxation rate. Concanavalin A with two Mn2+ ions remains in a closed conformation characterized by a lower relaxation rate. The rate of binding of the second Mn2+ to concanavalin A as determined by ESR and the rate of conversion of open form to closed form (folding over) as determined by proton relaxation rate measurements gave an identical rate constant of 80.0 +/- 5.8 M-1 h-1 at 17 degrees C. Ca2+, Sr2+, and high levels of methyl alpha-D-mannopyranoside also induce folding of concanavalin A. Ca2+ is not catalytic but stoichiometric in causing the folding. Mn2+ in the S1 site can be displaced by Ni2+, Co2+, and Zn2+, and Mn2+ in the S2 site can be displaced by Ca2+ and Sr2+. Concanavalin A with Ni2+, Co2+, Zn2+, or Mn2+ in the S1 site and Ca2+ or Sr2+ in the S2 site has a higher affinity for methylumbelliferyl alpha-D-mannopyranoside than Ni-Mn-, Co-Mn-, Zn-Mn-, and Cd-Cd-concanavalin A.  相似文献   

9.
1. Controlled tryptic digestion of native arginase from rat liver suggests that Mn2+ promotes a stable conformation as shown by the following features. 2. An 18-fold increase in the half-life of arginase activity in the presence of Mn2+ is produced. 3. The stability of subunit B of arginase is increased in the presence of Mn2+ as revealed by SDS-PAGE during the time-course of trypsin cleavage. 4. The different digestion products of arginase with and without Mn2+ appearing during the time-course of tryptic treatment. 5. Different activity/bands protein ratio at any time of the tryptic digestion in the incubation mixtures, with and without Mn2+, are apparent.  相似文献   

10.
The effect of Ca2+ loading, induced by the ionophore A23187, on methyl esterification of membrane proteins (i.e. bands 2.1, 3, 4.1 and 4.5) has been investigated in intact human erythrocytes. When the cells were incubated with L-[methyl-3H]methionine, 40 microM CaCl2 and 10 microM A23187 induce a 50% inhibition of membrane protein methyl esterification. This effect is selectively due to the increased intracellular Ca2+ concentration, as it is antagonized by 10 mM EGTA, and other divalent cations such as Mn2+ do not exert any inhibition. In order to clarify the mechanism(s) of the reported inhibition, the various events involved in the methyl esterification process in vivo were analyzed. L-Methionine uptake as well as protein methylase II activity are not directly affected by altered intracellular Ca2+ concentrations. Conversely in the Ca2+-loaded erythrocytes the conversion of [3H]methionine into [3H]AdoMet, catalyzed by AdoMet synthetase, decreases up to 25%. When the undialyzed erythrocyte cytosolic fraction is assayed in vitro for AdoMet synthetase the activity of the enzyme from the CaCl2/A23187-treated erythrocytes is significantly lower than the control, up to 5 mM ATP. This result suggests that in the Ca2+-loaded erythrocytes the ATP intracellular concentration is significantly lowered. The direct evaluation of ATP intracellular concentration, by HPLC, confirms a significant drop of ATP level, as a consequence of the Ca2+ loading. The removal of Ca2+ from the cells quantitatively restores both the AdoMet synthesis and the methyl esterification levels. The possible role of altered ATP intracellular concentrations as a regulatory factor in the AdoMet-dependent reactions as well as in post-translational protein methylation related to the ageing process is also discussed.  相似文献   

11.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

12.
There has been broad disagreement in the literature regarding the dependence of water exchange times (Te) across erythrocyte membranes studied by the 1H-NMR Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence on extracellular Mn2+ concentration. While some workers saw no change in Te with Mn2+, others reported a 35-50% decrease in Te with this extracellular paramagnetic relaxation agent. We present 1H-NMR evidence that a 30-50% change in Te can be produced by interdependence of the interpulse delay time of the CPMG pulse sequence and the external Mn2+ concentration. Such a large dependency is interpreted in terms of the diffusional effect as a major source. However, it is shown experimentally that if a large number of refocusing pi pulses are used, the observed transverse relaxation times are unaffected by Mn2+. Under these conditions excellent agreement of Te obtained in our study (13.0 +/- 0.64 ms (N = 36) at 21 degrees C) and that of 12.8 +/- 3.6 ms at 20-23 degrees C reported by the radiotracer method was found. Our findings suggest new and important implications for evaluating the previous reports of the 1H-NMR CPMG method concerning the [Mn2+] effect in the decrease of Te, and provide conditions where studies of water transport across erythrocyte membranes using this magnetic resonance method can be used with confidence.  相似文献   

13.
The role of a transmembrane Ca2+ gradient in anion transport by Band 3 of human resealed erythrocyte ghosts has been studied. The results show that a transmembrane Ca2+ gradient is essential for the conformation of erythrocyte Band 3 with higher anion transport activity. The dissipation of the transmembrane Ca2+ gradient by the ionophore A23187 inhibits the anion transport activity. The extent of this inhibition approaches 90% as the Ca2+ concentration on both sides of the ghost membrane is increased to 1.0 mM and half-maximum inhibition is observed at 0.25 mM Ca2+. Addition of ATP (0.4 mM) to the resealing medium can partly reestablish the transmembrane Ca2+ gradient by activation of Ca2+-ATPase and alleviate the inhibition to some extent. N-ethylmaleimide, an inhibitor of erythrocyte Ca2+-ATPase, prevents such restoration. Electron micrographs reveal that numerous larger intramembranous particles can be observed on the P-faces of freeze-fractured resealed ghosts in the absence of a transmembrane Ca2+ gradient.Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - PMSF phenylmethyl-sulfonylfluoride - NEM N-ethylamaleimide - BSA bovine serum albumin - EGTA ethyleneglycol-bis (aminoethylether)-tetra-acetic acid - EITC-Band 3 Band 3 labeled with EITC - Cai Ca2+ inside resealed ghosts - Cao Ca2+ outside resealed ghosts  相似文献   

14.
The human erythrocyte anion exchange protein, Band 3, was reacted with N-ethylmaleimide (NEM) in cells to a stoichiometry of 5.3 mol NEM per mol Band 3, indicating that all NEM-reactive cysteines in Band 3 were labeled. Quantitatively NEM-blocked Band 3 was still able to bind to and be eluted by reducing agents from a mercurial affinity resin, [p-(chloromercuribenzamido)ethylene]amino-Sepharose. Reaction of NEM-blocked Band 3 with p-chloromercuribenzoate (pCMB) did not prevent binding to the resin due to exchange of pCMB for the immobilized mercurial. pCMB has been reported to inhibit water and urea permeation across the red cell membrane, and this has been attributed to reaction with a NEM-reactive sulfhydryl in Band 3. The interaction of Band 3 with the immobilized ligand directly demonstrates the reaction of NEM-blocked Band 3 with a mercurial and indicates that the NEM-unreactive, pCMB-reactive sulfhydryl residue is accessible to within approximately equal to 12 A (the distance from the solid support to the Hg) of the surface of the solubilized Band 3 protein.  相似文献   

15.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

16.
The extent to which various paramagnetic ions (Cu2+, Mn2+ and Gd3+) free and bound to human serum albumin alter the water proton relaxation times at two frequencies has been investigated. NMR relaxation parameters, T1 and T2, were measured at 5 and 10 MHz using a saturation recovery (90 degrees-tau-90 degrees) and a spin-echo (90 degrees-tau-180 degrees) sequence respectively. We found that all three ions enhance their effectiveness in inducing water proton magnetic relaxation when they are bound to human serum albumin and that Gd3+ is the most effective in pure water and Mn2+ in the presence of the protein. Cu2+ has a smaller effect, but it presents an interesting behaviour correlated with the existence of two different binding sites, which is also confirmed by electronic paramagnetic resonance spectra. The results indicate the potential usefulness of large molecular paramagnetic complexes as contrast agents in NMR Imaging.  相似文献   

17.
Band 3 protein of human erythrocyte membrane is phosphorylated on a tyrosine residue located near the NH2 terminal by an endogenous tyrosine kinase activity (Dekowski, S., Rybicki, A. and Drickamer, K. (1983) J. Biol. Chem. 258, 2750-2753). A tyrosine kinase phosphorylating the band 3 protein in situ has been extracted from ghosts by non-ionic detergent and partially characterized (Phan-Dinh-Tuy, F., Henry, J. and Kahn, A. (1985) Biochem. Biophys. Res. Commun. 126, 304-312). We have studied the properties of the tyrosine kinase activity which remains bound to the ghosts after detergent extraction using the 43 kDa fragment of protein 3 as substrate. This activity, solubilized from the detergent-resistant material at 0.25 M NaCl and concentrated by phosphocellulose and tyrosine-agarose chromatographies, remains linked to high molecular weight complexes. It is specific for tyrosine. Assayed with the purified 43 kDa fragment it requires the presence of Mn2+ which cannot be replaced by Mg2+. Its affinity for 43 kDa fragment is very high with a Km of 3.3 microM. ATP acts as a phosphoryl donor with a Km of 0.55 microM. The tyrosine kinase activity was not modified by insulin, DMSO, phorbol ester and epidermal growth factor, vanadate and xanthine derivatives. Polyamines spermidine and the polylysine are inhibitors in the presence of Mn2+ but not in the presence of Mg2+. Heparin is a competitive inhibitor of ATP. 2,3-Diphosphoglycerate is an inhibitor at physiological concentrations (Ki = 2 mM). Purified red cell actin is not phosphorylated by the tyrosine kinase. These properties distinguish the red cell membrane-bound tyrosine kinase from other tyrosine kinases extracted from normal cells.  相似文献   

18.
The conformations of enzyme-bound pentapeptide (Arg-Arg-Ala-Ser-Leu) and heptapeptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) substrates of protein kinase have been studied by NMR in quaternary complexes of the type (Formula: see text). Paramagnetic effects of Mn2+ bound at the inhibitory site of the catalytic subunit on the longitudinal relaxation rates of backbone Ca protons, as well as on side-chain protons of the bound pentapeptide and heptapeptide substrates, have been used to determine Mn2+ to proton distances which range from 8.2 to 12.4 A. A combination of the paramagnetic probe-T1 method with the Redfield 2-1-4-1-2 pulse sequence for suppression of the water signal has been used to measure distances from Mn2+ to all of the backbone amide (NH) protons of the bound pentapeptide and heptapeptide substrates, which range from 6.8 to 11.1 A. Paramagnetic effects on the transverse relaxation rates yield rate constants for peptide exchange, indicating that the complexes studied by NMR dissociate rapidly enough to participate in catalysis. Model-building studies based on the Mn2+-proton distances, as well as on previously determined distances from Cr3+-AMPPCP to side-chain protons [Granot, J., Mildvan, A.S., Bramson, H. N., & Kaiser, E. T. (1981) Biochemistry 20, 602], rule out alpha-helical, beta-sheet, beta-bulge, and all possible beta-turn conformations within the bound pentapeptide and heptapeptide substrates. The distances are fit only by extended coil conformations for the bound peptide substrates with a minor difference between the pentapeptides and heptapeptides in the phi torsional angle at Arg3C alpha and in psi at Arg2C alpha. An extended coil conformation, which minimizes the number of interactions within the substrate, would facilitate enzyme-substrate interaction and could thereby contribute to the specificity of protein kinase.  相似文献   

19.
A mechanism of erythrocyte shape control has been previously hypothesized in which Band 3, the anion exchange protein, controls the shape. In essence, the mechanism hypothesizes that the membrane skeleton is used to generate different shapes and the alternate influx and efflux of anions mediated by Band 3, which recruit Band 3 to an inward-facing and an outward-facing conformation, contract and relax the skeleton by folding and unfolding spectrin. Spectrin is bound to Band 3 by the intermediary of ankyrin. The mechanism is shown to be consistent with rapid shape deformations of the erythrocyte in blood circulation. We have examined whether the mechanism could provide a basis of echinocytosis and stomatocytosis in disc-sphere transformations of the erythrocyte induced by a wide variety of agents. These agents were classified into four groups: lipids of the bilayer, Donnan equilibrium modifiers, Band 3 anion transport inhibitors and integral membrane protein modifiers. Evidence is presented that the lipids play a secondary function in the control of the erythrocyte shape, as indicated by the mechanism. Two possible functions of the lipids are suggested with respect to the mechanism. Without exception, echinocytogenic and stomatocytogenic Donnan equilibrium modifiers decrease and increase the equilibrium ratio of chloride (Cl-(i)/Cl-(o)), respectively, as predicted by the mechanism. Echinocytosis produced by competitive anion transport inhibitors slowly transported inward by Band 3 and by affinity labels of Band 3 is compatible with the mechanism. Evidence is presented which indicates that echinocytosis and stomatocytosis induced by amphiphilic drugs and detergents occur by inhibition of the Band 3 anion transport. Finally, echinocytosis and stomatocytosis induced by non-covalent and covalent modifiers of integral membrane proteins such as agglutinins and digestive enzymes are consistent with the mechanism.  相似文献   

20.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号