首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure alpha-latrotoxin is very inefficient at forming channels/pores in artificial lipid bilayers or in the plasma membrane of non-secretory cells. However, the toxin induces pores efficiently in COS-7 cells transfected with the heptahelical receptor latrophilin or the monotopic receptor neurexin. Signaling-deficient (truncated) mutants of latrophilin and latrophilin-neurexin hybrids also facilitate pore induction, which correlates with toxin binding irrespective of receptor structure. This rules out the involvement of signaling in pore formation. With any receptor, the alpha-latrotoxin pores are permeable to Ca(2+) and small molecules including fluorescein isothiocyanate and norepinephrine. Bound alpha-latrotoxin remains on the cell surface without penetrating completely into the cytosol. Higher temperatures facilitate insertion of the toxin into the plasma membrane, where it co-localizes with latrophilin (under all conditions) and with neurexin (in the presence of Ca(2+)). Interestingly, on subsequent removal of Ca(2+), alpha-latrotoxin dissociates from neurexin but remains in the membrane and continues to form pores. These receptor-independent pores are inhibited by anti-alpha-latrotoxin antibodies. Our results indicate that (i) alpha-latrotoxin is a pore-forming toxin, (ii) receptors that bind alpha-latrotoxin facilitate its insertion into the membrane, (iii) the receptors are not physically involved in the pore structure, (iv) alpha-latrotoxin pores may be independent of the receptors, and (v) pore formation does not require alpha-latrotoxin interaction with other neuronal proteins.  相似文献   

2.
Bittner MA 《Biochimie》2000,82(5):447-452
Alpha-Latrotoxin and its plasma membrane receptors cause a number of distinct effects in secretory cells. First, by tethering alpha-latrotoxin to the plasma membrane, CIRL/latrophilin and neurexin 1 alpha facilitate alpha-latrotoxin-induced channel formation. The stimulation of secretion by alpha-latrotoxin in neuroendocrine cells is a consequence of Ca(2+) influx through these alpha-latrotoxin-induced channels. In addition to channel formation, alpha-latrotoxin enhances secretion in permeabilized cells through interaction with the plasma membrane receptor CIRL/latrophilin. Finally, overexpression of CIRL/latrophilin inhibits Ca(2+)-dependent secretion in permeabilized chromaffin cells in the absence of alpha-latrotoxin. This effect represents a 'constitutive' action of the G-protein coupled receptor to specifically inhibit an ATP-dependent priming step in the secretory pathway. The effect suggests that the receptor may have an important modulatory role in synaptic transmission.  相似文献   

3.
The major component of black widow spider venom, alpha-latrotoxin, triggers massive exocytosis in a variety of neurosecretory cells. An important trigger for exocytosis is the calcium influx via alpha-latrotoxin-induced channels in biological membranes. However, this mechanism fails to explain exocytosis which occurred in the complete absence of extracellular calcium. Recently, sophisticated biochemical and molecular techniques have led to the discovery of novel alpha latrotoxin-binding membrane receptors: neurexins and latrophilin/CIRL (calcium-independent receptor for alpha-latrotoxin). Neurexins are single transmembrane proteins which bind to alpha-latrotoxin in a calcium-dependent manner and also interact with the synaptic vesicle protein, synaptotagmin. On the other hand, latrophilin is a seven-transmembrane protein and belongs to the family of G-protein-coupled receptors. The multitude of effects of alpha-latrotoxin on exocytosis in different cell systems and the nature of its membrane targets are discussed in this article. The molecular details of how alpha-latrotoxin binding is transduced eventually to exocytosis remain to be elucidated.  相似文献   

4.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

5.
alpha-Latrotoxin, a presynaptic toxin from black widow spider venom Latrodectus mactans tredecimguttatus, triggers exocytosis in a variety of neurosecretory cells both in the presence and absence of calcium in the medium. The toxin interacts with two types of membrane the receptors which belong to different families of neuronal proteins and have different structures. Calcium-dependent receptor of alpha-latrotoxin is identified as neurexin I alpha and belongs to the family of neurexins. This family is selectively expressed in nerve tissue. The calcium-independent receptor of alpha-latrotoxin belongs to the family of G-protein-coupled receptors and proteins which homologous to it are found in heart, lung, kidney and spleen tissues. As a result of alpha-latrotoxin interaction with membrane receptor in the calcium medium the toxin forms the ionic channels in plasmalemma and enhances its calcium permeability. The effects of alpha-latrotoxin on exocytosis in the calcium and calcium-free media and question concerning coupling of channel-forming and secretogenic properties of alpha-latrotoxin are discussed.  相似文献   

6.
Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha-latrotoxin-released neurotransmitter has the vesicular nature. We assume that the type of the toxin membrane receptor does not determine the mechanisms of [(3)H]GABA release evoked by alpha-latrotoxin.  相似文献   

7.
Neurexins are functional alpha-latrotoxin receptors   总被引:2,自引:0,他引:2  
Sugita S  Khvochtev M  Südhof TC 《Neuron》1999,22(3):489-496
Alpha-latrotoxin is a potent neurotoxin that triggers synaptic exocytosis. Surprisingly, two distinct neuronal receptors for alpha-latrotoxin have been described: CIRL/latrophilin 1 (CL1) and neurexin-1alpha. Alpha-latrotoxin is thought to trigger exocytosis by binding to CL1, while the role of neurexin 1alpha is uncertain. Using PC12 cells, we now demonstrate that neurexins indeed function as alpha-latrotoxin receptors that are at least as potent as CL1. Both alpha- and beta-neurexins represent autonomous alpha-latrotoxin receptors that are regulated by alternative splicing. Similar to CL1, truncated neurexins without intracellular sequences are fully active; therefore, neurexins and CL1 recruit alpha-latrotoxin but are not themselves involved in exocytosis. Thus, alpha-latrotoxin is unique among neurotoxins, because it utilizes two unrelated receptors, probably to amplify recruitment of alpha-latrotoxin to active sites.  相似文献   

8.
The receptor of alpha-latrotoxin (the major toxin of the black widow spider venom), purified from bovine synaptosomal membranes, was reconstituted into small unilamellar liposomes. These (but not control) liposomes exhibited high-affinity, specific binding of [125I]alpha-latrotoxin. In the receptor-bearing liposomes alpha-latrotoxin induced depolarization and stimulated 45Ca efflux. These responses to alpha-latrotoxin, that were observed only in the presence of external divalent cations, resembled those previously demonstrated in mammalian brain synaptosomes. The alpha-latrotoxin-activated ion fluxes are therefore, at least in part, the result of the direct interaction of the toxin with its receptor. When control and receptor-bearing liposomes were pre-incubated with alpha-latrotoxin and then added to a solution bathing a planar lipid bilayer membrane, single channel cationic conductances were observed. In the presence of the receptor, the conductances induced by alpha-latrotoxin were markedly different from those observed without the receptor, but not identical to those observed without the receptor, but not identical to those recently characterized by patch clamping in the cells of a line (PC12) sensitive to alpha-latrotoxin. These results demonstrate that the reconstituted receptor is functional, and suggest that the cationic channel activated by the toxin-receptor interaction is modulated by additional component(s) in the membrane of synapses and cells.  相似文献   

9.
alpha-Latrotoxin stimulates neurotransmitter release probably by binding to two receptors, CIRL/latrophilin 1 (CL1) and neurexin Ialpha. We have now produced recombinant alpha-latrotoxin (LtxWT) that is as active as native alpha-latrotoxin in triggering synaptic release of glutamate, GABA and norepinephrine. We have also generated three alpha-latrotoxin mutants with substitutions in conserved cysteine residues, and a fourth mutant with a four-residue insertion. All four alpha-latrotoxin mutants were found to be unable to trigger release. Interestingly, the insertion mutant LtxN4C exhibited receptor-binding affinities identical to wild-type LtxWT, bound to CL1 and neurexin Ialpha as well as LtxWT, and similarly stimulated synaptic hydrolysis of phosphatidylinositolphosphates. Therefore, receptor binding by alpha-latrotoxin and stimulation of phospholipase C are insufficient to trigger exocytosis. This conclusion was confirmed in experiments with La3+ and Cd2+. La3+ blocked release triggered by LtxWT, whereas Cd2+ enhanced it. Both cations, however, had no effect on the stimulation by LtxWT of phosphatidylinositolphosphate hydrolysis. Our data show that receptor binding by alpha-latrotoxin and activation of phospholipase C do not by themselves trigger exocytosis. Thus receptors recruit alpha-latrotoxin to its point of action without activating exocytosis. Exocytosis probably requires an additional receptor-independent activity of alpha-latrotoxin that is selectively inhibited by the LtxN4C mutation and by La3+.  相似文献   

10.
alpha-latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G-protein-coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin-G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with G alpha q/11 and G alpha o but not with G alpha s, G alpha i or G alpha z, indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX-evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca2+, LTX triggers vesicular exocytosis because botulinum neurotoxins E, Cl or tetanus toxin inhibit the Ca(2+)-dependent component of the toxin-evoked release. Based on (i) the known involvement of G alpha q in the regulation of inositol-1,4,5-triphosphate generation and (ii) the requirement for Ca2+ in LTX action, we tested the effect of inhibitors of Ca2+ mobilization on the toxin-evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca(2+)-dependent toxin's action. Thapsigargin, which depletes intracellular Ca2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca2+. On the other hand, clostridial neurotoxins or drugs interfering with Ca2+ metabolism do not inhibit the Ca2(+)-independent component of LTX-stimulated release. In the absence of Ca2+, the toxin induces in the presynaptic membrane non-selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca2+ provided intracellular Ca2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca2+, which then triggers secretion.  相似文献   

11.
alpha-latrotoxin (LTX), a 120 kDa protein in black widow spider venom, triggers massive neurotransmitter exocytosis. Previous studies have highlighted a role for both intrinsic pore-forming activity and receptor binding in the action of this toxin. Intriguingly, activation of a presynaptic G protein-coupled receptor, latrophilin, may trigger release independent of pore-formation. Here we have utilized a previously identified ligand of nematode latrophilin, emodepside, to define a latrophilin-dependent pathway for neurotransmitter release in C. elegans. In the pharyngeal nervous system of this animal, emodepside (100 nM) stimulates exocytosis and elicits pharyngeal paralysis. The pharynxes of animals with latrophilin (lat-1) gene knockouts are resistant to emodepside, indicating that emodepside exerts its high-affinity paralytic effect through LAT-1. The expression pattern of lat-1 supports the hypothesis that emodepside exerts its effect on the pharynx primarily via neuronal latrophilin. We build on these observations to show that pharynxes from animals with either reduction or loss of function mutations in Gq, phospholipaseC-beta, and UNC-13 are resistant to emodepside. The latter is a key priming molecule essential for synaptic vesicle-mediated release of neurotransmitter. We conclude that the small molecule ligand emodepside triggers latrophilin-mediated exocytosis via a pathway that engages UNC-13-dependent vesicle priming.  相似文献   

12.
Alpha-latrotoxin (LTX) causes massive release of neurotransmitters via a complex mechanism involving (i) activation of receptor(s) and (ii) toxin insertion into the plasma membrane with (iii) subsequent pore formation. Using cryo-electron microscopy, electrophysiological and biochemical methods, we demonstrate here that the recently described toxin mutant (LTXN4C) is unable to insert into membranes and form pores due to its inability to assemble into tetramers. However, this mutant still binds to major LTX receptors (latrophilin and neurexin) and causes strong transmitter exocytosis in synaptosomes, hippocampal slice cultures, neuromuscular junctions, and chromaffin cells. In the absence of mutant incorporation into the membrane, receptor activation must be the only mechanism by which LTXN4C triggers exocytosis. An interesting feature of this receptor-mediated transmitter release is its dependence on extracellular Ca2+. Because Ca2+ is also strictly required for LTX interaction with neurexin, the latter might be the only receptor mediating the LTXN4C action. To test this hypothesis, we used conditions (substitution of Ca2+ in the medium with Sr2+) under which LTXN4C does not bind to any member of the neurexin family but still interacts with latrophilin. We show that, in all the systems tested, Sr2+ fully replaces Ca2+ in supporting the stimulatory effect of LTXN4C. These results indicate that LTXN4C can cause neurotransmitter release just by stimulating a receptor and that neurexins are not critical for this receptor-mediated action.  相似文献   

13.
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.  相似文献   

14.
Receptor-like protein-tyrosine phosphatase sigma (PTPvarsigma) is essential for neuronal development and function. Here we report that PTPvarsigma is a target of alpha-latrotoxin, a strong stimulator of neuronal exocytosis. alpha-Latrotoxin binds to the cell adhesion-like extracellular region of PTPvarsigma. This binding results in the stimulation of exocytosis. The toxin-binding site is located in the C-terminal part of the PTPvarsigma ectodomain and includes two fibronectin type III repeats. The intracellular catalytic domains of PTPvarsigma are not required for the alpha-latrotoxin binding and secretory response triggered by the toxin in chromaffin cells. These features of PTPvarsigma resemble two other previously described alpha-latrotoxin receptors, neurexin and CIRL. Thus, alpha-latrotoxin represents an unusual example of the neurotoxin that has three independent, equally potent, and yet structurally distinct targets. The known structural and functional characteristics of PTPvarsigma, neurexin, and CIRL suggest that they define a functional family of neuronal membrane receptors with complementary or converging roles in presynaptic function via a mechanism that involves cell-to-cell and cell-to-matrix interaction.  相似文献   

15.
Poisoning with alpha-latrotoxin, a neurotoxic protein from black widow spider venom, results in a robust increase of spontaneous synaptic transmission and subsequent degeneration of affected nerve terminals. The neurotoxic action of alpha-latrotoxin involves extracellular binding to its high affinity receptors as a first step. One of these proteins, CIRL, is a neuronal G-protein-coupled receptor implicated in the regulation of secretion. We now demonstrate that CIRL has two close homologs with a similar domain structure and high degree of overall identity. These novel receptors, which we propose to name CIRL-2 and CIRL-3, together with CIRL (CIRL-1) belong to a recently identified subfamily of large orphan receptors with structural features typical of both G-protein-coupled receptors and cell adhesion proteins. Northern blotting experiments indicate that CIRL-2 is expressed ubiquitously with highest concentrations found in placenta, kidney, spleen, ovary, heart, and lung, whereas CIRL-3 is expressed predominantly in brain similarly to CIRL-1. It appears that CIRL-2 can also bind alpha-latrotoxin, although its affinity to the toxin is about 14 times less than that of CIRL-1. When overexpressed in chromaffin cells, CIRL-2 increases their sensitivity to alpha-latrotoxin stimulation but also inhibits Ca2+-regulated secretion. Thus, CIRL-2 is a functionally competent receptor of alpha-latrotoxin. Our findings suggest that although the nervous system is the primary target of low doses of alpha-latrotoxin, cells of other tissues are also susceptible to the toxic effects of alpha-latrotoxin because of the presence of CIRL-2, a low affinity receptor of the toxin.  相似文献   

16.
Latrophilin is a brain-specific Ca2+-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin. We now report the finding of two novel latrophilin homologues. All three latrophilins are unusual G protein-coupled receptors. They exhibit strong similarities within their lectin, olfactomedin and transmembrane domains but possess variable C-termini. Latrophilins have up to seven sites of alternative splicing; some splice variants contain an altered third cytoplasmic loop or a truncated cytoplasmic tail. Only latrophilin-1 binds alpha-latrotoxin; it is abundant in brain and is present in endocrine cells. Latrophilin-3 is also brain-specific, whereas latrophilin-2 is ubiquitous. Together, latrophilins form a novel family of heterogeneous G protein-coupled receptors with distinct tissue distribution and functions.  相似文献   

17.
α-Latrotoxin from the venom of black widow spider induces and augments neurotransmitterand hormone release by way of extracellular Ca~(2 ) influx and cellular signal transduction pathways.By usingwhole cell current and capacitance recording,the photolysis of card Ca~(2 ),and Ca~(2 ) microfluorometry andamperometry,we investigated the stimulating effect and mechá(?)ism of α-latrotoxin on exocytosis in ratpancreatic β cells,LβT2 cells and latrophilin plasmid-transfected INS-1 cells.Our data indicated that:(1)α-latrotoxin increased cytosolic Ca~(2 ) concentration through the formation of cation-permitting pores and sub-sequent Ca~(2 ) influx with the presence of extracellular Ca~(2 );(2)α-latrotoxin stimulated exocytosis in normalbath solution and its stimulating effect on secretion was eradicated in Ca~(2 )-free bath solution; and (3)α-latrotoxin sensitized the molecular machinery of fusion through activation of protein kinase C and increasedthe response of cells to Ca~(2 ) photolysed by a flash of ultraviolet light.In summary,α-latrotoxin inducedexocytosis by way of Ca~(2 ) influx and accelerated vesicle fusion by the sensitization of fusion machinery.  相似文献   

18.
alpha-Latrotoxin, a component of black widow spider venom, stimulates transmitter release from nerve terminals and intact chromaffin cells and enhances secretion from permeabilized chromaffin cells already maximally stimulated by Ca(2+). In this study we demonstrate that chromaffin cells contain a protein antigenically similar to the cloned Ca(2+)-independent receptor for alpha-latrotoxin. Although this receptor has homology to the secretin family of G-protein-linked receptors, pertussis toxin has no effect on the ability of alpha-latrotoxin to enhance secretion, suggesting that neither G(i) nor G(o) is involved in the response. Furthermore, in the absence of Ca(2+), alpha-latrotoxin does not stimulate polyphosphoinositide-specific phospholipase C. alpha-Latrotoxin specifically enhances ATP-dependent secretion in permeabilized cells. An in situ assay for protein kinase C reveals that alpha-latrotoxin augments the activation of protein kinase C by Ca(2+), and use of protein kinase inhibitors demonstrates that this activation is important for the toxin's enhancing effect. This enhancement of secretion requires Ca(2+) concentrations above 3 microm and is not supported by Ba(2+) or nonhydrolyzable guanine nucleotides, which do not stimulate protein kinase C. We conclude that alpha-latrotoxin stimulates secretion in permeabilized cells by regulating a Ca(2+)- and ATP-dependent event involving protein kinase C.  相似文献   

19.
alpha-latrotoxin, a component of black widow spider venom, binds to presynaptic nerve terminals and stimulates massive neurotransmitter release. Previous studies have demonstrated that alpha-latrotoxin first binds to two high-affinity receptors on nerve terminals, neurexins and CLs (CIRLs and latrophilins), and then executes a critical, second step of unknown nature that stimulates neurotransmitter release. We now demonstrate that incubation of alpha-latrotoxin with synaptosomes at 0 degrees C results in its peripheral membrane association. Incubation at 37 degrees C, however, converts the toxin into an operationally integral membrane protein, and induces generation of a protease-resistant fragment that consists of the entire N-terminal domain of alpha-latrotoxin and becomes protease sensitive after lysis of synaptosomes. Our data suggest that alpha-latrotoxin inserts into the presynaptic plasma membrane after receptor binding, resulting in an intracellular location of the N-terminal sequences. Membrane insertion of the N-terminal domain of alpha-latrotoxin occurs spontaneously, independently of membrane recycling or transmembrane ion gradients. We postulate that alpha-latrotoxin acts intracellularly in triggering release, and propose that non-selective cation channels induced by alpha-latrotoxin may be a by-product of membrane insertion.  相似文献   

20.
The binding of [125I] alpha-latrotoxin to synaptosomes from the rat brain is studied. It is shown that the constant rate of toxin association with the synaptosome receptor at 37 degrees C is equal to 8.2 +/- 1.3 x 10(7) M-1.s-1, while that of synaptosomal membrane -7.6 +/- 2.7 x 10(6) M-1 s-1. Depolarization of the synaptosome membrane induced by 55 mM KCl decreases the binding rate of toxin to the receptor, the rate constant being equal to 3.9 +/- 1.5 x 10(7) m-1 s-1. The pattern of the dissociation process of the toxin-receptor complex of synaptosomes and of synaptosomal membrane is different. In the first case dissociation follows two stages with the rate constants 3.6 x 10(-3) s-1 and 1.2/10(-4) s-1, in the second case it follows one stage with the constant equalled 2.0 x 10(-5) s-1. The quantity of the toxin binding sites on synaptosomes may vary under the action of agents modifying the activity of calcium fluxes which are induced by alpha-latrotoxin. It is supposed that a decrease in the ATP level in synaptosomes as well as deenergy of the surface membrane leads to a change in the state of the alpha-latrotoxin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号