首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Nuclei of frog oocytes were isolated, fixed in OsO4 or KMnO4, and washed. Nuclear envelopes were then dissected off, placed on grids, and air-dried for electron microscopy. Envelopes from immature oocytes at the stage of beginning yolk deposition were compared with those from mature oocytes. Envelopes from the immature stage had "pores" whose annuli contained more material and showed central globules in the center much more frequently than envelopes from mature eggs. Annuli and central globules had similar appearance and fixation properties, suggesting similar chemical composition. After fixation with KMnO4, residual densities suggested that "pore" diaphragms are much more variable in thickness or composition in the younger stages. Envelopes of the immature oocytes had about 40 per cent more "pores" per unit area than mature envelopes. In crowding together, the "pores" tended to assume geometrical packing arrays in the young envelope, showing minimum center-to-center spacings of about 1530 A. Since the actual discontinuities in the membranes of the envelope are only about 950 A in diameter, this minimum distance of approach suggests that adjacent formations of the nuclear surface are associated with "pore" structure and perhaps set their limiting spacing distances. If this is true, then it can be deduced that "pore"-associated structures of the nuclear surface are probably circular in outline and about 1500 A in diameter. Isotopically labeled lysine was administered to intact, growing oocytes for 1 to 4 hours and the envelopes were subsequently isolated and fixed. Autoradiography of entire envelopes showed little or no incorporation of lysine into proteins, as compared with small fragments from other parts of the cell of roughly comparable mass. It was concluded that the isolated envelope, as seen in the electron micrographs, does not synthesize or turn over lysine-containing protein at a high rate.  相似文献   

2.
The major polypeptides of the nuclear pore complex   总被引:24,自引:0,他引:24  
Nuclear envelopes of maturing oocytes of various amphibia contain an unusually high number of pore complexes in very close packing. Consequently, nuclear envelopes, which can be manually isolated in great purity, provide a remarkable enrichment of nuclear pore complex material, relative to membranous and other interporous structures. When the polypeptides of nuclear envelopes isolated from oocytes of Xenopus laevis and Triturus alpestris are examined by gel electrophoresis, visualized either by staining with Coomassie blue or by radiofluorography after in vitro reaction with [3H]dansyl chloride, a characteristic pattern is obtained (10 major and 15 minor bands). This polypeptide pattern is radically different from that of the nuclear contents isolated from the same cell. Extraction of the nuclear envelope with high salt concentrations and moderately active detergents such as Triton X-100 results in the removal of membrane material but leaves most of the non-membranous structure of the pore complexes. The dry weight of the pore complex (about 0.2 femtograms) remains essentially unchanged during such extractions as measured by quantitative electron microscopy. The extracted preparations which are highly enriched in nuclear pore complex material contain only two major polypeptide components with apparent molecular weights of 150 000 and 73 000. Components of such an electrophoretic mobility are not present as major bands, if at all, in nuclear contents extracted in the same way. It is concluded that these two polypeptides are the major constituent protein(s) of the oocyte nuclear pore complex and are specific for this structure. When nuclear envelopes are isolated from rat liver and extracted with high salt buffers and Triton X-100 similar bands are predominant, but two additional major components of molecular weights of 78 000 and 66 000 are also recognized. When the rat liver nuclear membranes are further subfractionated material enriched in the 66 000 molecular weight component can be separated from the membrane material, indicating that this is relatively loosely associated material, probably a part of the nuclear matrix. The results suggest that the nuclear pore complex is not only a characteristic ubiquitous structure but also contains similar, if not identical, skeletal proteins that are remarkably resistant to drastic changes of ionic strength as well as to treatments with detergents and thiol reagents.  相似文献   

3.
We have used high resolution scanning electron microscopy (SEM) to study the nuclear envelope components of isolated mouse liver nuclei. The surfaces of intact nuclei are covered by closely packed ribosomes which are distinguishable by SEM from nuclear pore complexes. After removal of nuclear membranes with the nonionic detergent Triton X-100, the pore complexes remain attached to an underlying, peripheral nuclear lamina, as described by others. The surface of this dense lamina is composed of particulate granules, 75-150 A in diameter, which are contiguous over the entire periphery. We did not observe the pore-to-pore fibril network suggested by other investigators, but such a structure might be the framework upon which the dense lamina is formed. Morphometric analysis of pores and pore complexes shows their size, structure, and density to be similar to that of other mammalian cells. In addition, several types of pore complex-associated structures, not previously reported by other electron microscope (EM) techniques, are observed by SEM. Our studies suggest that the major role of the dense lamina is associated with the distribution, stability, and perhaps, biogenesis of nuclear pore complexes. Treatment of isolated nuclei with a combination of Triton X-100 and sodium deoxycholate removes membranes, dense lamina, and nuclear pore complexes. The resulting "chromatin nuclei" retain their integrity despite the absence of any limiting peripheral structures.  相似文献   

4.
During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup107-160 complexes are in single units instead of assembled prepores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes.  相似文献   

5.
Semi-isolated annulate lamellae were prepared from single newt oocytes (Triturus alpestris) by a modified Callan-Tomlin technique. Such preparations were examined with the electron microscope, and the negative staining appearance of the annulate lamellae is described. The annulate lamellae can be detected either adhering to the nuclear envelope or being detached from it. Sometimes they are observed to be connected with slender tubular-like structures interpreted as parts of the endoplasmic reticulum. The results obtained from negative staining are combined with those from sections. Especially, the structural data on the annulate lamellae and the nuclear envelope of the very same cell were compared. Evidence is presented that in the oocytes studied the two kinds of porous cisternae, namely annulate lamellae and nuclear envelope, are markedly distinguished in that the annulate lamellae exhibit a much higher pore frequency (generally about twice that found for the corresponding nuclear envelope) and have also a relative pore area occupying as much as 32% to 55% of the cisternal surface (compared with 13% to 22% in the nuclear envelopes). The pore diameter and all other ultrastructural details of the pore complexes, however, are equivalent in both kinds of porous cisternae. Like the annuli of the nuclear pore complexes of various animal and plant cells, the annuli of the annulate lamellae pores reveal also an eightfold symmetry of their subunits in negatively stained as well as in sectioned material. Furthermore, the annulate lamellae are shown to be a site of activity of the Mg-Na-K-stimulated ATPase.  相似文献   

6.
Annulate lamellae are cytoplasmic organelles composed of stacked sheets of membrane containing pores that are structurally indistinguishable from nuclear pores. The functions of annulate lamellae are not well understood. Although they may be found in virtually any eucaryotic cell, they occur most commonly in transformed and embryonic tissues. In Drosophila, annulate lamellae are found in the syncytial blastoderm embryo as it is cleaved to form the cellular blastoderm. The cytological events of the cellularization process are well documented, and may be used as temporal landmarks when studying changes in annulate lamellae. By using morphometric techniques to analyze electron micrographs of embryos, we are able to calculate the number of pores per nucleus in nuclear envelopes and annulate lamellae during progressive stages of cellularization. We find that annulate lamellae pores remain at a low level while nuclear envelopes are expanding and acquiring pores in early interphase. Once nuclear envelopes are saturated with pores, however, the number of annulate lamellae pores increases more than 10-fold in 9 min. Over the next 30 min it gradually declines to the initial low level. On the basis of these results, we propose (a) that pore synthesis and assembly continues after nuclear envelopes have been saturated with pores; (b) that these supernumerary pores accumulate transiently in cytoplasmic annulate lamellae; and (c) that because these pores are not needed by the embryo they are subsequently degraded.  相似文献   

7.
U F Greber  A Senior    L Gerace 《The EMBO journal》1990,9(5):1495-1502
One of a small number of polypeptides of the nuclear pore complex that have been identified is a major glycoprotein called gp210. Since it is very resistant to chemical extractions from membranes, gp210 was suggested to be integrated into nuclear membranes. In this study we have determined the membrane topology of this protein by biochemical and immunological approaches. We found that limited proteolysis of isolated nuclear envelopes with papain released a 200 kd water-soluble fragment of gp210 containing concanavalin A-reactive carbohydrate. Immunogold electron microscopy with a monoclonal antibody showed that this domain is localized on the lumenal side of nuclear membranes at pore complexes. Anti-peptide antibodies against two sequences near the C-terminus of gp210 were used to map possible membrane spanning and cytoplasmically disposed regions of this protein. From analysis of the protease sensitivity of these epitopes in sealed membrane vesicles, we determined that gp210 contains a small cytoplasmic tail and only a single membrane-spanning region. Thus, gp210 is a transmembrane protein with most of its mass, including the carbohydrate, located in the perinuclear space. This topology suggests that gp210 is involved primarily in structural organization of the pore complex, for which it may provide a membrane attachment site.  相似文献   

8.
The disintegration of the nuclear envelope has been examined in nuclei and nuclear envelopes isolated from amphibian oocytes from amphibian oocytes and rat liver tissue, using different electron microscope techniques (ultrathin sections and negatively or positively stained spread preparations). Various treatments were studied, including disruption by surface tension forces, very low salt concentrations, and nonionic detergents such as Triton C-100 and Nonidet P-40. The highest local stability of the cylinders of nonmembranous pore complex material is emphasized. As progressive disintegration occurred in the membrane regions, a network of fibrils became apparent which interconnects the pore complexes and is distinguished from the pore complex-associated about 15-20 nm thick, located at the level of the inner nuclear membrane, which is recognized in thin sections to bridge the interpore distances. With all disintegraiton treatments a somewhat higher susceptibility of the outer nuclear membrane is notable, but a selective removal does not take place. Final stages of disintegration are generally characterized by the absence of identifiable, membrane- like structures. Analysis of detergent-treated nuclei and nuclear membrane fractions shows almost complete absence of lipid components but retention bo significant amount of glycoproteins with a typical endomembrane-type carbohydrate pattern. Various alternative interpretations of these observations are discussed. From the present observations and those of Aaronson and Blobel (1,2), we favor the notion that threadlike intrinsic membrane components are stabilized by their attachment to the pore complexes, and perhaps also to peripheral nuclear structures,and constitute a detergent-resistant, interpore skeleton meshwork.  相似文献   

9.
Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.' Received: 10 February 1997/Revised: 10 February 1998  相似文献   

10.
R Stick  H Schwarz 《Cell》1983,33(3):949-958
The nuclear lamina is a rigid, proteinaceous layer underlying the inner nuclear membrane of eucaryotic cells. It is present in somatic cell nuclei, disappears during mitosis, and is absent from male meiotic cells. We have investigated the disappearance and reformation of the nuclear lamina during meiosis in oocytes, using immunofluorescence and electron microscopy. We find that the status of the nuclear lamina during meiosis of oocytes differs from the reversible depolymerization seen in mitosis in two respects. First, the lamina disappears during meiotic prophase without affecting the structure of the nuclear membranes or the nuclear pores. Second, the proteins of the dissociated lamina are undetectable by immunological methods in pachytene oocytes, whereas they persist in the cytoplasm during mitosis.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2029-2036
We obtained a monoclonal antibody (RL13) that identifies three integral membrane proteins specific to the nuclear envelope of rat liver, a major 75-kD polypeptide and two more minor components of 68 and 55 kD. Immunogold labeling of isolated nuclear envelopes demonstrates that these antigens are localized specifically to the inner nuclear membrane, and that the RL13 epitope occurs on the inner membrane's nucleoplasmic surface where the nuclear lamina is found. When nuclear envelopes are extracted with solutions containing nonionic detergent and high salt to solubilize nuclear membranes and pore complexes, most of these integral proteins remain associated with the insoluble lamina. Since the polypeptides recognized by RL13 are relatively abundant, they may function as lamina attachment sites in the inner nuclear membrane. Major cross-reacting antigens are found by immunoblotting and immunofluorescence microscopy in all rat cells examined. Therefore, these integral proteins are biochemical markers for the inner nuclear membrane and will be useful models for studying nuclear membrane biogenesis.  相似文献   

12.
The nuclear envelope (NE) of amphibian oocytes can be readily isolated in relatively structurally intact and pure form and has been used extensively for structural studies. Using high resolution scanning electron microscopy (HRSEM), both surfaces of the NE can be visualized in detail. Here, we demonstrate the use of HRSEM to obtain high resolution information of NE structure, confirming previous data and providing some new information. NEs, manually isolated from Triturus cristatus oocytes, have been mounted on conductive silicon chips, fixed, critical point dried and coated with a thin, continuous film of chromium or tantalum and viewed at relatively high accelerating voltage in a field emission scanning electron microscope with the sample within the objective lens. Both nucleoplasmic and cytoplasmic surfaces of the nuclear pore complexes (NPC) have been visualized, revealing the cytoplasmic coaxial ring, associated particles, central plug/transporter and spokes. The nucleoplasmic face is dominated by the previously described basketlike structure attached to the nucleoplasmic coaxial ring. In Triturus, a novel, highly regular flat sheet of fibers, termed the NE lattice (NEL) has been observed attached to the distal ring of the NPC basket. The NEL appears to be distinct from the nuclear lamina. Evidence for the NEL is also presented in thin TEM sections from Triturus oocytes and GVs and in spread NEs from Xenopus. A model is presented for NEL structure and its interaction with the NPCs is discussed.  相似文献   

13.
The three-dimensional structure of the nuclear pore complex has been determined to a resolution of approximately 90 A by electron microscopy using nuclear envelopes from Xenopus oocytes. It is shown to be an assembly of several discrete constituents arranged with octagonal symmetry about a central axis. There are apparent twofold axes perpendicular to the octad axis which suggest that the framework of the pore complex is constructed from two equal but oppositely facing halves. The half facing the cytoplasm is in some instances decorated by large particles, similar in appearance and size to ribosomes.  相似文献   

14.
Nuclear envelopes from oocytes of Xenopus laevis are rich in pore complexes and contain a major polypeptide of apparent molecular weight (Mr) 68,000. A rapid extraction procedure using buffer containing 1% (vv) Triton X-100 and 1.0 m-KCl allows the preparation of insoluble nuclear envelope skeletons showing only residual pore complex structures, with some interconnecting filament material, and one major polypeptide; i.e. that of Mr 68,000. This skeletal protein, which is not found in nuclear contents, reveals, on two-dimensional gel electrophoresis, a series of distinct isoelectric variants focusing in the pH range from 6.4 to 6.6. In living oocytes, this protein is continuously synthesized, as demonstrated by incorporation of labelled amino acids, and phosphorylated, A similar prominent skeletal protein has been found in nuclear envelopes of oocytes of other amphibia; however, slight but significant differences in electrophoretic mobility can be noted between different amphibian species.For comparison, nucleocortical lamina structures containing few pore complexes have been isolated, using similar extraction procedures, from various somatic cells of X. laevis, including erythrocytes. Laminae from these cells contain two major polypeptides, one (LI) of Mr 72,000 focusing at approximately pH 5.35 and another (LII) of Mr 69,000 focusing in several variants between pH 6.20 and 6.35. Similarly extracted “pore complex-lamina” fractions from rat liver contain a polypeptide of similar size and electrical charge as protein LI from Xenopus and, in addition, two other polypeptides (Mr values: 74,000 and 62,000) both focusing between pH 6.6 and 6.9.It is concluded that the pore complex-lamina structure of the oocyte nucleus is assembled by only one major protein of Mr 68,000. The results also show that the protein composition of this insoluble nucleocortical structure can be different in different cells of the same organism. The compositional differences of these nuclear envelope skeletons are discussed in relation to the relative proportions of pore complex and interporous (lamina) material in the nuclear envelopes of the specific cells. It is suggested that the Mr 68,000 protein predominant in oocyte nuclear envelopes contributes, as an architectural component, to the formation of the highly organized nuclear pore complex.  相似文献   

15.
Nuclear membrane disassembly and rupture   总被引:2,自引:0,他引:2  
The nuclear envelope consists of two membranes traversed by nuclear pore complexes. The outer membrane is continuous with the endoplasmic reticulum. At mitosis nuclear pore complexes are dismantled and membranes disperse. The mechanism of dispersal is controversial: one view is that membranes feed into the endoplasmic reticulum, another is that they vesiculate. Using Xenopus egg extracts, nuclei have been assembled and then induced to breakdown by addition of metaphase extract. Field emission scanning electron microscopy was used to study disassembly. Strikingly, endoplasmic reticulum-like membrane tubules form from the nuclear surface after the addition of metaphase extracts, but vesicles were also observed. Microtubule inhibitors slowed but did not prevent membrane removal, whereas Brefeldin A, which inhibits vesicle formation, stops membrane disassembly, suggesting that vesiculation is necessary. Structures that looked like coated buds were observed and buds were labelled for beta-COP. We show that nuclear pore complexes are dismantled and the pore closed prior to membrane rupturing, suggesting that rupturing is an active process rather than a result of enlargement of nuclear pores.  相似文献   

16.
Summary In order to investigate the chemical composition of the nuclear pore complexes isolated nuclei from matureXenopus laevis oocytes were manually fractioned into nucleoplasmic aggregates and the nuclear envelopes. The whole isolation procedure takes no more than 60–90 sec, and the pore complexes of the isolated envelopes are well preserved as demonstrated by electron microscopy. Minor nucleoplasmic and cytoplasmic contaminations associated with the isolated nuclear envelopes were determined with electron microscopic morphometry and were found to be quantitatively negligible as far as their mass and nucleic acid content is concerned. The RNA content of the fractions was determined by direct phosphorus analysis after differential alkaline hydrolysis. Approximately 9% of the total nuclear RNA of the matureXenopus egg was found to be attached to the nuclear envelope. The nonmembranous elements of one pore complex contain 0.41×10–16 g RNA. This value agrees well with the content estimated from morphometric data. The RNA package density in the pore complexes (270×10–15 g/3) is compared with the nucleolar, nucleoplasmic and cytoplasmic RNA concentration and is discussed in context with the importance of the pore complexes for the nucleo-cytoplasmic transport of RNA-containing macromolecules.Additionally, the results of the chemical analyses as well as of the3H-actinomycin D autoradiography and of the nucleoprotein staining method of Bernhard (1969) speak against the occurence of considerable amounts of DNA in the nuclear pore complex structures.The author thanks Miss Ulrika Lempert, Miss Marianne Winter, and Miss Sigrid Krien for skilful technical help as well as Dr. W. W. Franke for many helpful discussions. The work has been supported by a Deutsche Forschungsgemeinschaft grant given to Dr. W. W. Franke (SFB Molgrudent, 46).  相似文献   

17.
We have used heavy-metal shadowing to study the interaction of morphological components of Xenopus oocyte nuclear pore complexes with nucleoplasmin conjugated to colloidal gold. When microinjected into Xenopus oocytes, gold-labelled nucleoplasmin accumulated on the axis of the pores. Envelopes partially disrupted by treatment with low ionic strength buffer produced isolated islands of pores together with substantial quantities of rings deriving from the cytoplasmic and nucleoplasmic faces of the pores. In preparations from oocytes in which nucleoplasmin-gold had been microinjected, most (238/288) of the rings examined had also been labelled and, in the majority of these (60%), the label was located centrally within isolated rings. The central positioning of the nucleoplasmin-gold in isolated rings indicated that these morphological components of the pores were probably involved in the transport of nucleoplasmin into the nucleus, either by way of the initial binding of the molecule or by way of its translocation across the nuclear envelope. Although more work is required to resolve the precise stage at which the rings are involved, a number of lines of evidence suggested that they were more likely to be involved in the translocation step rather than in initial binding of nucleoplasmin.  相似文献   

18.
Nuclei from nearly ripe eggs of Rana pipiens were isolated and cleaned in 0.1 M KCl. The whole nucleus was then digested to various degrees with ribonuclease or trypsin, followed by washing and fixation in either osmium tetroxide or potassium permanganate. The nuclear envelope was dissected off, placed on a grid, air dried, and compared with undigested controls in the electron microscope. Some envelopes were dehydrated, embedded in methacrylate, and sectioned. Annuli around "pores" are composed of a substance or substances, at least partially fibrillar, which is preserved by osmium but lost during permanganate fixation. Material within the "pores" is also preserved by osmium but partially lost after permanganate. No evidence of granules or tubules in the annuli was found in air dried mounts although a granular appearance could be seen in tangentially oriented thin sections. Thin sections of isolated envelopes give evidence of diffuse material within the "pores" as well as a more condensed diaphragm across their waists. In whole mounts of the envelope the total density within "pores" is relatively constant from "pore" to "pore." All material within "pores," including the condensed diaphragm, is removable by trypsin digestion. Wispy material from the "pore" structure projects into the nucleus and annular material extends into the cytoplasm. Both annular and diaphragm materials remain with the envelope when it is isolated and are thus considered a part of its structure, not merely evidences of material passing through. There is no evidence of ribonuclease-removable material in any part of the "pore" complex.  相似文献   

19.
DNA (from bacteriophage lambda or Xenopus) is assembled into nucleus-like structures when mixed with an extract from Xenopus eggs. Electron microscopy shows that these in vitro-reconstituted nuclei possess complete double membranes; some, but not all, nuclei have pore complexes. Extracts depleted of their endogenous ATP (by addition of ATPases) cannot assemble nuclear envelopes visible by phase-contrast microscopy. Once synthetic nuclei are assembled, however, they are stable when ATP is subsequently depleted, although their chromatin becomes condensed. About one-fourth of the nuclei assembled in vitro from lambda DNA accumulate nuclear proteins such as nucleoplasmin. ATP depletion blocks nucleoplasmin accumulation both in vitro, in pre-assembled synthetic nuclei, and in vivo, in the nucleus of microinjected oocytes. However, nucleoplasmin previously accumulated by reconstituted nuclei or by the germinal vesicle in microinjected oocytes is retained after ATP depletion.  相似文献   

20.
Nuclei prepared from MOPC-21 cells were treated with the nonionic detergents Triton X-100 or Nonidet P-40. Chemical analysis revealed that nearly 90% of the nuclear phospholipid was removed by detergent treatment. The membrane-denuded nuclei remained intact with preservation of nuclear pore complexes as demonstrated by electron microscopy. Ribonucleic acid transport from detergent-treated nuclei proceeded at the same rate and to the same extent as in control nuclei. Normal nuclear restriction of nucleic acids was unaltered by removal of the nuclear membranes. The effect of temperature on transport of RNA from freshly isolated myeloma nuclei with intact nuclear envelopes was studied. No temperature transition was associated with the transport process. These data indicate that the transport of macromolecules from isolated myeloma nuclei is independent of the nuclear membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号