首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The adeno-associated virus type 2 (AAV) replication (Rep) proteins Rep78 and 68 (Rep78/68) exhibit a number of biochemical activities required for AAV replication, including specific binding to a 22-bp region of the terminal repeat, site-specific endonuclease activity, and helicase activity. Individual and clusters of charged amino acids were converted to alanines in an effort to generate a collection of conditionally defective Rep78/68 proteins. Rep78 variants were expressed in human 293 cells and analyzed for their ability to mediate replication of recombinant AAV vectors at various temperatures. The biochemical activities of Rep variants were further characterized in vitro by using Rep68 His-tagged proteins purified from bacteria. The results of these analyses identified a temperature-sensitive (ts) Rep protein (D40,42,44A-78) that exhibited a delayed replication phenotype at 32 degrees C, which exceeded wild-type activity by 48 h. Replication activity was reduced by more than threefold at 37 degrees C and was undetectable at 39 degrees C. Stability of the Rep78 protein paralleled replication levels at each temperature, further supporting a ts phenotype. Replication differences resulted in a 3-log-unit difference in virus yields between the permissive and nonpermissive temperatures (2.2 x 10(6) and 3 x 10(3), respectively), demonstrating that this is a relatively tight mutant. In addition to the ts Rep mutant, we identified a nonconditional mutant with a reduced ability to support viral replication in vivo. Additional characterization of this mutant demonstrated an Mg(2+)-dependent phenotype that was specific to Rep endonuclease activity and did not affect helicase activity. The two mutants described here are unique, in that Rep ts mutants have not previously been described and the D412A Rep mutant represents the first mutant in which the helicase and endonuclease functions can be distinguished biochemically. Further understanding of these mutants should facilitate our understanding of AAV replication and integration, as well as provide novel strategies for production of viral vectors.  相似文献   

3.
4.
5.
The only universally conserved sequence among all influenza A viral neuraminidases is located between amino acids 222 and 230. However, the potential roles of these amino acids remain largely unknown. Through an array of experimental approaches including mutagenesis, reverse genetics, and growth kinetics, we found that this sequence could markedly affect viral replication. Additional experiments revealed that enzymes with mutations in this region demonstrated substantially decreased catalytic activity, substrate binding, and thermostability. Consistent with viral replication analyses and enzymatic studies, protein modeling suggests that these amino acids could either directly bind to the substrate or contribute to the formation of the active site in the enzyme. Collectively, these findings reveal the essential role of this unique region in enzyme function and viral growth, which provides the basis for evaluating the validity of this sequence as a potential target for antiviral intervention and vaccine development.  相似文献   

6.
7.
8.
9.
An essential feature of viral quasispecies, predicted from quasispecies theory, is that the target of selection is the mutant distribution as a whole. To test molecularly the mutant composition selected from a viral quasispecies we reconstructed a mutant distribution using 19 antigenic variants of foot-and-mouth disease virus (FMDV). Each variant was marked by a specific amino acid replacement at a major antigenic site of the virus that conferred resistance to a monoclonal antibody (mAb). The variants were introduced in the mutant spectrum of a biological FMDV clone, at a frequency commonly found in FMDV quasispecies. The reconstructed quasispecies (and a number of control populations) were allowed to replicate in the presence or absence of the mAb. The mutant distribution that became dominant as a result of antibody selection included at least ten of the 19 mutants initially used to reconstruct the quasispecies. No such biased mutant repertoire was found in control populations. The results show that a mutant distribution was selected, and are incompatible with selection of an individual genome, which then generated multiple mutants upon further replication. An ample representation of variants immediately following a selection event should contribute to subsequent adaptability of the virus.  相似文献   

10.
Human immunodeficiency virus (HIV)-specific CD8(+) T-lymphocyte pressure can lead to the development of viral escape mutants, with consequent loss of immune control. Antiretroviral drugs also exert selection pressures on HIV, leading to the emergence of drug resistance mutations and increased levels of viral replication. We have determined a minimal epitope of HIV protease, amino acids 76 to 84, towards which a CD8(+) T-lymphocyte response is directed. This epitope, which is HLA-A2 restricted, includes two amino acids that commonly mutate (V82A and I84V) in the face of protease inhibitor therapy. Among 29 HIV-infected patients who were treated with protease inhibitors and who had developed resistance to these drugs, we show that the wild-type PR82V(76-84) epitope is commonly recognized by cytotoxic T lymphocytes (CTL) in HLA-A2-positive patients and that the CTL directed to this epitope are of high avidity. In contrast, the mutant PR82A(76-84) epitope is generally not recognized by wild-type-specific CTL, or when recognized it is of low to moderate avidity, suggesting that the protease inhibitor-selected V82A mutation acts both as a CTL and protease inhibitor escape mutant. Paradoxically, the absence of a mutation at position 82 was associated with the presence of a high-avidity CD8(+) T-cell response to the wild-type virus sequence. Our results indicate that both HIV type 1-specific CD8(+) T cells and antiretroviral drugs provide complex pressures on the same amino acid sequence of the HIV protease gene and, thus, can influence viral sequence evolution.  相似文献   

11.
12.
We determined the essentiality of all amino acid replacements within an 11-codon sequence in the putative nucleoside-binding site of thymidine kinase encoded by herpes simplex virus type 1. This involved partial randomization of 11 codons in the gene to create a degenerate library, followed by genetic complementation using a tk- Escherichia coli strain and selection of unnatural active enzymes. We produced and tested 53,000 variants; of which 190 were found to be biologically active. Sequence analyses of functional variants revealed a high degree of flexibility in accommodating different types of amino acid substitutions in this region. However, no replacement was tolerated at proline-173, whereas tyrosine-172 could be replaced by only phenylalanine. To further define permissible substitutions at specified positions, we constructed a library with randomization at only four test codons. We produced and tested 600,000 variants; of which only 5 were active. Again proline-173 was conserved, and only tyrosine and phenylalanine were found at position 172. The identification of these conserved amino acids should provide important insights into the understanding of the structural basis of catalysis by this enzyme.  相似文献   

13.
14.
Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.  相似文献   

15.
16.
赵建元  丁寄葳  米泽云  周金明  魏涛  岑山 《遗传》2015,37(5):480-486
人免疫缺陷病毒(HIV-1)急性感染过程中,病毒的遗传多样性显著减少,往往只有一株或几株病毒可以建立有效感染,这种病毒被称为初始传播病毒(Transmitted/Founder virus)。病毒蛋白R(Vpr)是HIV-1的辅助蛋白之一,在病毒复制过程中起重要作用。研究初始传播病毒Vpr基因遗传变异与生物学特征对于阐明病毒建立感染的关键环节具有重要意义。文章利用流式细胞术分析了C亚型HIV-1初始传播病毒株与慢性感染株MJ4的 Vpr蛋白诱导细胞G2期阻滞和细胞凋亡的能力。结果显示,初始传播病毒ZM246和ZM247的Vpr诱导细胞G2期阻滞和细胞凋亡的能力显著高于慢性感染株MJ4 Vpr。氨基酸序列分析表明,初始传播病毒Vpr在第77、85和94位上存在高频突变。研究结果提示初始传播病毒可能在病毒感染早期,通过Vpr基因的遗传突变,提升病毒诱导细胞停滞G2期和细胞凋亡的能力,进而促进病毒在宿主体内的复制和传播。  相似文献   

17.
Adeno-associated virus type 2 Rep endonuclease activity is necessary for both viral DNA replication and site-specific integration of the viral genome into human chromosome 19. The biochemical activities required for site-specific endonuclease activity (namely specific DNA binding and transesterification activity) have been mapped to the amino-terminal domain of the AAV2 Rep protein. The amino-terminal 208 amino acids are alone sufficient for site-specific endonuclease activity, and nicking by this domain is metal-dependent. To identify this metal-binding site, we have employed a cysteine mutagenesis approach that targets conserved acidic amino acids. By using this technique, we provide functional biochemical data supporting a role for glutamate 83 in the coordination of metal ions in the context of Rep endonuclease activity. In addition, our biochemical data suggest that glutamate 164, although not involved in the coordination of metal ions, is closely associated with the active site. Thus, in lieu of a crystal structure for the AAV type 2 amino-terminal domain, our data corroborate the recently published structural studies of the AAV type 5 endonuclease and suggest that although the two enzymes are not highly conserved with respect to the AAV family, their active sites are highly conserved.  相似文献   

18.
19.
非天然氨基酸正交翻译技术利用外源的非天然氨基酸氨酰tRNA合成酶(aaRS)基因和对应的tRNA基因构建非天然氨基酸正交翻译系统(Orthogonal translation system)。该正交翻译系统能利用终止密码子在蛋白翻译过程中将非天然氨基酸定点插入目标多肽链中。该技术不但是一种新的蛋白质生化研究工具,在新型基因工程病毒疫苗研究中更具有划时代的意义。利用人为构建的具有非天然氨基酸正交翻译系统的转基因细胞,通过在病毒复制的关键基因中引入提前终止密码子构建的突变病毒,在添加非天然氨基酸的情况下该基因仍能完整表达从而完成病毒的复制和传代,但该突变病毒在正常细胞(无非天然氨基酸正交翻译系统的宿主细胞)中因复制关键基因不能完整表达而无法复制传代,因而是一种复制缺陷型病毒。这种复制缺陷型病毒用作疫苗时兼具了减毒活疫苗免疫效果良好与灭活疫苗安全性高的优点,是一种较为理想的活病毒疫苗。文中简要综述了非天然氨基酸正交翻译技术在新型复制缺陷活病毒疫苗研究中的应用及其前景。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号