首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships among forty‐nine taxa representing twenty‐four genera of Aphidiinae (Hymenoptera: Braconidae) were investigated using DNA sequence of a portion of the mitochondrial 16S rRNA gene and parsimony analysis. Seven species in six other subfamilies of Braconidae were used as outgroup. The results suggested that members of Aphidiinae are monophyletic. The basal lineage of Aphidiinae was Aclitus in weighted and unweighted parsimony analyses and Praini was basal relative to Ephedrini. With the exception of Pauesia and Aphidius, all genera were monophyletic. The results support generic status for Euaphidius, but not for Lysaphidus. Diaeretus leucopterus was internal to a clade composed of three Pauesia species, suggesting that the latter genus may be paraphyletic. A combined analysis that included DNA sequence of 16S rRNA, NADH1 dehydrogenase and 28S rRNA resulted in more robust cladograms with topologies similar to those inferred from the 16S rRNA gene sequence alone. The results are compared to previously proposed phylogenies of Aphidiinae based on morphological and molecular characters.  相似文献   

2.
We have obtained a molecular phylogeny of the subfamily Aphidiinae (Hymenoptera: Braconidae) by sequencing the 18S rDNA in 37 aphidiine taxa. Approximately 1857 nucleotides were sequenced in each species. Evolutionary relationships were established by comparing the results of maximum-parsimony, maximum-likelihood, and distance analyses. The most variable region of this gene, V4 (approx 403 nucleotides), was employed to establish the basality of the tribe Ephedrini within this subfamily. All phylogenetic reconstructions yielded trees with very similar topologies that confirmed the existence of two of the four traditionally accepted tribes, Ephedrini and Praini, but questioned the existence of Trioxini and Aphidiini. To better ascertain the status of some groups, the same analyses were repeated with a reduced taxonomic sample in which some species that produced systematic errors in the former phylogenetic reconstructions had been removed. The results from this second analysis favor either the three-tribes hypothesis (Ephedrini, Praini, and Aphidiini) or a new classification with at least five tribes (Ephedrini, Praini, Monoctonini, Trioxini, and Aphidiini). The 18S rDNA gene is a useful marker to recover relationships not only at the tribe but also at the subtribe and genus levels in this group. The natural status of some traditionally accepted clusters is also corroborated with the present data whereas the placement of other clusters is questioned or remains unresolved.  相似文献   

3.
Phylogenetic relationships among the Braconidae were examined using homologous 16S rDNA, 28S rDNA D2 region, and 18S rDNA gene sequences and morphological data using both PAUP* 4.0 and MRBAYES 3.0B4 from 88 in-group taxa representing 35 subfamilies. The monophyletic nature of almost all subfamilies, of which multiple representatives are present in this study, is well-supported except for two subfamilies, Cenocoelinae and Neoneurinae that should probably be treated as tribal rank taxa in the subfamily Euphorinae. The topology of the trees generated in the present study supported the existence of three large generally accepted lineage or groupings of subfamilies: two main entirely endoparasitic lineages of this family, referred to as the "helconoid complex" and the "microgastroid complex," and the third "the cyclostome." The Aphidiinae was recovered as a member of the non-cyclostomes, probably a sister group of Euphorinae or Euphorinae-complex. The basal position of the microgastroid complex among the non-cyclostomes has been found in all our analyses. The cyclostomes were resolved as a monophyletic group in all analyses if two putatively misplaced groups (Mesostoa and Aspilodemon) were excluded from them. Certain well-supported relationships evident in this family from the previous analyses were recovered, such as a sister-group relationships of Alysiinae+Opiinae, of Braconinae+Doryctinae, and a close relationship between Macrocentrinae, Xiphozelinae, Homolobinae, and Charmontinae. The relationships of "Ichneutinae + ((Adeliinae + Cheloninae) + (Miracinae + (Cardiochilinae + Microgastrinae)))" was confirmed within the microgastroid complex. The position of Acampsohelconinae, Blacinae, and Trachypetinae is problematic.  相似文献   

4.
We tested the published hypothesis of a Gondwanan origin for the overwhelmingly northern hemisphere aphid parasitoids (Aphidiinae) as follows: (i) finding their sister group by a phylogenetic analysis of the entire Braconidae (Insecta: Hymenopterai using sequence data from approximately 500 bp fragments of both the nuclear 28S (D2 region) and mitochondrial 16S rDNA genes, (ii) using this sister-group relationship and the more informative 28S D2 gene to estimate the phylogeny of the Aphidiinae and (iii) estimating the ancestral distribution for the Aphidiinae using maximum-likelihood and maximum-parsimony methods. Both methods indicated a Gondwanan origin.  相似文献   

5.
Wasps of the braconid subfamily Aphidiinae are solitary endoparasitoids of aphids. Several aspects of their biology have been the focus of intuitive evolutionary hypotheses which could be tested with a robust phylogeny. Phylogenetic hypotheses have been proposed previously for aphidiines based on morphology, embryology, and DNA sequences. However, many of them are based on a limited number of characters and/or taxa and lack congruence. In addition, many of the inferred phylogenies have not been based upon cladistic analysis. Therefore, a phylogenetic study of Aphidiinae was undertaken, utilizing 465 bp of DNA sequence of the mitochondrial NADH1 dehydrogenase gene. DNA sequences were obtained from 40 taxa, including 14 genera and three outgroups. It is suggested that in agreement with most of the previously proposed phylogenies, the aphidiines, each of the three recognized tribes (Praini, Ephedrini, Aphidiini), and most genera are monophyletic. In contrast to previously proposed phylogenies, the clade of Praon + Dyscritulus (=Praini), rather than Ephedrini, is basal among the aphidiines.  相似文献   

6.
Ichneumonoid phylogeny is revised on the basis of morphological, palaeontological and molecular evidence. The only previous formal cladistic study of the phylogeny of the families of the superfamily Ichneumonoidea made many assumptions about what families lower taxa belonged to and was based on a very limited set of characters, nearly all of which were uninformative at family level. We have subdivided both Ichneumonidae and Braconidae into major groups, investigated several new character systems, reinterpreted some characters, scored several character states for extinct taxa by examining impression fossils using environment chamber scanning electron microscopy, and included data for a significant new subfamily of Braconidae from Cretaceous amber of New Jersey. Sixteen different variants of the data set were each subjected to parsimony analysis without weighting and with successive approximations weighting employing both maximum and minimum values of both the retention and rescaled consistency indices. Each analysis resulted in one of seven different strict consensus trees. Consensus trees based on subsets of these trees, selected on the basis of the optimal character compatibility index (OCCI), resulted in an eighth distinct tree. All trees had the Braconidae monophyletic with the Trachypetinae as the basal clade, and also had a clade comprising various arrangements of Apozyginae, the Rhyssalinae group, Aphidiinae and 'other cyclostomes', but relationships among the remaining braconid groups varied between trees. Only one of the consensus trees had the Ichneumonidae (including Tanychorella ) monophyletic. The Eoichneumonidae + Tanychora are the sister group the Braconidae in two of the consensus trees. Paxylommatinae were basal in the clade comprising the Eoichneumonidae + Tanychora and the Braconidae. The preferred tree, based on the highest OCCI was used for interpreting character state transitions.  相似文献   

7.
This study examined subfamilial relationships within Braconidae, using 4 kb of sequence data for 139 taxa. Genetic sampling included previously used markers for phylogenetic studies of Braconidae (28S and 18S rDNA) as well as new nuclear protein‐coding genes (CAD and ACC). Maximum likelihood and Bayesian inference of the concatenated dataset recovered a robust phylogeny, particularly for early divergences within the family. This study focused primarily on non‐cyclostome subfamilies, but the monophyly of the cyclostome complex was strongly supported. There was evidence supporting an independent clade, termed the aphidioid complex, as sister to the cyclostome complex of subfamilies. Maxfischeria was removed from Helconinae and placed within its own subfamily within the aphidioid complex. Most relationships within the cyclostome complex were poorly supported, probably because of lower taxonomic sampling within this group. Similar to other studies, there was strong support for the alysioid subcomplex containing Gnamptodontinae, Alysiinae, Opiinae and Exothecinae. Cenocoeliinae was recovered as sister to all other subfamilies within the euphoroid complex. Planitorus and Mannokeraia, previously placed in Betylobraconinae and Masoninae, respectively, were moved to the Euphorinae, and may share a close affiliation with Neoneurinae. Neoneurinae and Ecnomiinae were placed as tribes within Euphorinae. A sister relationship between the microgastroid and sigalphoid complexes was also recovered. The helconoid complex included a well‐supported lineage that is parasitic on lepidopteran larvae (macrocentroid subcomplex). Helconini was raised to subfamily status, and was recovered as sister to the macrocentroid subcomplex. Blacinae was demoted to tribal status and placed within the newly circumscribed subfamily Brachistinae, which also contains the tribes Diospilini, Brulleiini and Brachistini, all formerly in Helconinae.  相似文献   

8.
Abstract— The recently published phylogeny of Braconidae by Quicke and van Achterberg is reassessed. Character-state definitions and character polarities are evaluated, and more rigorous methods are suggested. Our results indicate that there are many more parsimonious solutions to their data set, the consensus of which differs substantially from their results. Based on our reassessment, little can be said about the relationships among braconid subfamilies. Consensus trees show the cyclostomes as a largely unresolved basal grade. The two other major lineages which have been proposed, the helconoids and microgastroids, are somewhat better resolved, but not consistently so. Relationships among the helconoids vary considerably depending on the parameters used for parsimony analysis.  相似文献   

9.
Psychodidae is a diverse family of flies with approximately 3000 described species in six subfamilies, including Phlebotominae vectors of human disease. Psychodidae has been the subject of few phylogenetic investigations and development of a stable classification has been hampered by poor understanding of the morphology of larvae, pupae and adults. Specimens were collected, and we analysed DNA sequence data from two nuclear genes for one or more representatives of all subfamilies. The subfamilies with multiple representatives included were resolved as monophyletic with good support. Placement of Horaiellinae, Sycoracinae and Trichomyiinae remains unclear, whereas Bruchomyiinae is hypothesized as the sister group to (Phlebotominae + Psychodinae). Representatives of some psychodine tribes were resolved in agreement with previous hypotheses. Relationships among and within subfamilies are discussed, and morphological characters supporting these relationships are reviewed. One compelling synapomorphy of the male genitalia supporting a relationship between Phlebotominae and Psychodinae is the presence of articulated surstyli with apical retinacula. Only cerci are present and sometimes developed into clasping structures in males of other subfamilies.  相似文献   

10.
The internal phylogeny of ants (Hymenoptera: Formicidae)   总被引:5,自引:0,他引:5  
Abstract. The higher phylogeny of the Formicidae was analysed using 68 characters and 19 taxa: the 14 currently recognized ant subfamilies plus 5 potentially critical infrasubfamilial taxa. The results justified the recognition of 3 additional subfamilies: Aenictogitoninae Ashmead (new status), Apomyrminae Dlussky & Fedoseeva (new status), and Leptanilloidinae Bolton (new subfamily). A second analysis on these better delimited 17 subfamilies resulted in 24 equally most parsimonious trees. All trees showed a basal division of extant Formicidae into two groups, the first containing (Myrmicinae, Pseudomyrmecinae, Nothomyrmeciinae, Myrmeciinae, Formicinae, Dolichoderinae, Aneuretinae) and the second the remaining subfamilies. Clades appearing within these groups included the Cerapachyinae plus 'army ants', the Nothomyrmeciinae plus Myrmeciinae, the 'formicoid' subfamilies (Aneuretinae + Dolichoderinae + Formicinae), and the Old World army ants (Aenictinae + Aenictogitoninae + Doryline), but relationships within the last two groups were not resolved, and the relative positions of the Apomyrminae, Leptanillinae and Ponerinae remained ambiguous. Moreover, a bootstrap analysis produced a consensus tree in which all branches were represented in proportions much lower than 95%. A reconstruction of the ground plan of the Formicidae indicated that the most specialized of all recent ants are the members of the subfamily Dorylinae and the least specialized ones are the monotypic Apomyrminae.  相似文献   

11.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

12.
基于COⅡ基因序列的斑腿蝗科部分亚科的分子系统学研究   总被引:1,自引:0,他引:1  
马兰  黄原 《昆虫学报》2006,49(6):982-990
采用PCR产物直接测序法测定了斑腿蝗科10个亚科16属22种的COⅡ基因585 bp的片段, 对序列的碱基组成进行了分析,并评估了数据集的系统发育信号;最后,以癞蝗科的肃南 短鼻蝗作为外群,采用NJ法、MP法、ML法以及贝叶斯推论法构建了系统树,以解决这些物种所代表的亚科之间的系统发育关系。结果表明:22种斑腿蝗科昆虫的COⅡ基因序列碱基组成表现强烈的A+T含量偏向性。对COⅡ基因585 bp序列片段构成的全数据组和根据密码子不同位点划分的密码子第一、第二和第三位点数据组的系统发育信号分析显示,所有数据组都具有一定的系统发育信息。在4种方法得到的合一树中发现: (1)星翅蝗亚科、刺胸蝗亚科、黑背蝗亚科、斑腿蝗亚科的亲缘关系较近;(2)卵翅蝗亚科与稻蝗亚科亲缘关系较近,建议卵翅蝗亚科似乎应归入稻蝗亚科中,板胸蝗亚科与这两个亚科的关系较近;(3)黑蝗亚科和秃蝗亚科似乎应合并为一个亚科;(4)切翅蝗亚科的4个属未聚在一起,表明这些属的区别较大,不是一个单系群;(5)黑蝗亚科和秃蝗亚科关系较近,且与本研究中其他几个亚科的亲缘关系相对较远。研究结果表明COⅡ基因在解决斑腿蝗科的亚科以下属种间的系统发育关系时是一个有效的分子标记。  相似文献   

13.
本研究选取优茧蜂亚科Euphorinae(膜翅目Hymenoptera:茧蜂科Braconidae)的8族19属23种作为内群,茧蜂其它6个亚科的8属8种作外群,首次结合同源核糖体28S rDNA D2基因序列片段和41个形态学特征对该亚科进行了系统发育学研究。利用"圆口类"的内茧蜂亚科Rogadinae、茧蜂亚科Braconinae、矛茧蜂亚科Doryctinae的3个亚科为根,以PAUP*4.0和MrBayes3.0B4软件分别应用最大简约法(MP)和贝叶斯法对优茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了分析;并以PAUP*4.0对优茧蜂亚科的28S rDNA D2基因序列的片段的碱基组成与碱基替代情况进行了分析。结果表明:优茧蜂亚科的28S rDNA D2基因序列片段的GC%含量在40.00%~49.25%之间变动,而对于碱基替代情况来讲,优茧蜂亚科各个成员间序列变异位点上颠换(transversion)大于转换(transition);不同的分析和算法所产生的系统发育树都表明目前根据形态定义出的优茧蜂亚科Euphorinae不是一个单系群,而是一个与蚁茧蜂亚科Neoneurinae和高腹茧蜂亚科Cenocoelinae混杂在一起的并系群;在优茧蜂亚科内部,悬茧蜂族Meterorini和食甲茧蜂族Microctonini(排除猎户茧蜂属Orionis)为单系群,而宽鞘茧蜂族Centistini、大颚茧蜂族Cosmophorini、优茧蜂族Euphorini、瓢虫茧蜂族Dinocampini为并系群;悬茧蜂族Meterorini在优茧蜂亚科Euphorinae内位于基部位置的观点得到部分的支持,同时食甲茧蜂族Microctonini被判定为相对进化的类群。此外对于优茧蜂亚科内各属之间的相互亲缘关系,不同算法所得到的系统发育属的结果不完全一致,这表明优茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

14.
The Ptinidae (Coleoptera: Bostrichoidea) are a cosmopolitan, ecologically diverse, but poorly known group of Coleoptera and, excluding a few economic pests, species are rarely encountered. This first broad phylogenetic study of the Ptinidae s.l. (i.e. including both the spider beetles and anobiids) examines relationships based on DNA sequence data from two mitochondrial genes (16S and COI) and one nuclear gene (28S), using out‐group taxa from both the Bostrichidae and Dermestidae. Topologies varied depending on the genes used and whether data were analysed with either parsimony or Bayesian methods. Generally the two mitochondrial genes supported relationships near the tips of the phylogeny, whereas the nuclear gene supported the basal relationships. The monophyly of the Ptinidae was not inferred by all of the gene combinations and analysis methods, although the combined Ptinidae and Bostrichidae have a single origin in all cases. Alternative relationships include the Ptinidae s.s. (i.e. Ptininae and Gibbiinae) as sister to the anobiids (i.e. the nine remaining subfamilies of Ptinidae s.l.) + Bostrichidae, or the Bostrichidae as sister to the Ptinidae s.s.+ anobiids. Most of the larger subfamilies within the Ptinidae are not monophyletic. Further analysis with more taxa and more genes will be required to clarify and decide upon the best hypothesis of relationships found within the clades of the Bostrichidae and Ptinidae. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 88–108.  相似文献   

15.
Reliable identification of Aphidiinae species (Braconidae) is a prerequisite for conducting studies on aphid–parasitoid interactions at the community level. However, morphological identification of Aphidiinae species remains problematic even for specialists and is almost impossible with larval stages. Here, we compared the efficiency of two molecular markers [mitochondrial cytochrome c oxydase I (COI) and nuclear long wavelength rhodopsin (LWRh)] that could be used to accurately identify about 50 species of Aphidiinae that commonly occur in aphid–parasitoid networks in northwestern Europe. We first identified species on a morphological basis and then assessed the consistency of genetic and morphological data. Probably because of mitochondrial introgression, Aphidius ervi and A. microlophii were indistinguishable on the basis of their COI sequences, whereas LWRh sequences discriminated these species. Conversely, because of its lower variability, LWRh failed to discriminate two pairs of species (Aphidius aquilus, Aphidius salicis, Lysiphlebus confusus and Lysiphlebus fabarum). Our study showed that no unique locus but a combination of two genes should be used to accurately identify members of Aphidiinae.  相似文献   

16.
The D2 variable region of 28S rRNA was sequenced in a wide range of Ichneumonoidea to provide the first comprehensive phylogenetic reconstruction of this superfamily. The two constituent families (Braconidae and Ichneumonidae) were each found to contain a single well-supported clade dominated by the more plesiomorphic life history strategies (idiobiosis, ectoparasitism and attacking endoephytic hosts). In the Braconidae this clade corresponds to the morphologically-defined group called the cyclostomes. In the Ichneumonidae the clade unites for the first time the pimpliformes ( sensu Wahl) with most of the phygadeuontoid subfamilies and several small taxa including Adelognathus and Euceros . Relationships among the remaining, more biologically-derived, subfamilies were less well resolved, but included among the Braconidae a well-supported microgastroid clade and strong evidence for a sister group relationship between the Agathidinae and Sigalphinae.  相似文献   

17.
Major progress has been made recently toward resolving the phylogeny of Noctuoidea, the largest superfamily of Lepidoptera. However, numerous questions and weakly supported nodes remain. In this paper we independently check and extend the main findings of multiple recent authors by performing maximum‐likelihood analyses of 5–19 genes (6.7–18.6 kb) in 74 noctuoids representing all the families and a majority of the subfamilies. Our results strongly support the six family system of Zahiri et al., with the former Lymantriidae and Arctiidae subsumed within the huge family Erebidae, and Noctuidae restricted largely to the subfamilies with so‐called trifine hindwing venation. Our data also strongly corroborate monophyly of the set of four families with quadrifid forewing venation, to the exclusion of Notodontidae, and removal from the latter of Oenosandridae. Other among‐family relationships, however, remain unsettled. Our evidence is equivocal on the position of Oenosandridae, which are sister group to either Notodontidae alone or to all other noctuoids. Like other recent nuclear gene studies, our results also provide no strong support for relationships among the four quadrifid forewing families. In contrast, within families our analyses significantly expand the list of robustly resolved relationships, while introducing no strong conflicts with previous molecular studies. Within Notodontidae, for which we present the largest molecular taxon sample to date, we find strong evidence for polyphyly for some, or all, recent definitions of the subfamilies Thaumetopoeinae, Pygaerinae, Notodontinae and Heterocampinae. Deeper divergences are incompletely resolved but there is strong support for multiple ‘backbone’ nodes subtending most of the subfamilies studied. Within Erebidae, we find much agreement and no strong conflict with a recent previous study regarding relationships among subfamilies, and somewhat stronger support. Although many questions remain, the two studies together firmly resolve positions for over half the subfamilies. Within Noctuidae, we find no strong conflict with previous molecular studies regarding relationships among subfamilies, but much stronger resolution along the ‘backbone’ of the phylogeny. Combining information from multiple studies yields strongly resolved positions for most of the subfamilies. Finally, our results strongly suggest that the tribes Pseudeustrotiini and Prodeniini, currently assigned to the largest subfamily, Noctuinae, do not belong there. In sum, our results provide additional corroboration for the main outlines of family‐level phylogeny in Noctuoidea, and contribute toward resolving relationships within families.  相似文献   

18.
No qualitative cladistic analysis has been performed previously for the subfamily classification of Pompilidae (Hymenoptera). In 1994 Shimizu proposed six subfamilies, but their validity and relationships remain inconclusive. The objective of this study was to perform a quantitative analysis of phylogenetic relationships of the Pompilidae, with emphasis on testing the validity of proposed subfamilies. Two cladistic analyses were performed based on morphological evidence. First, a maximum-parsimony analysis of Shimizu's original morphological data matrix (72 taxa by 54 characters) was conducted, with the data subjected to a heuristic search for the first time with phylogenetic software. The resulting strict-consensus cladogram yielded a monophyletic Ceropalinae that was sister group to a large polytomy containing members of the remaining five subfamilies. In a second analysis, several of Shimizu's characters were re-examined, and new characters and more taxa were added to the data set. Terminal taxa were coded as species rather than as generic abstractions, and 20 additional morphological characters were introduced. The analysis was based on 77 morphological characters derived from the adults of 84 taxa. This second analysis suggested that Notocyphinae sensu Shimizu (1994) was nested within Pompilinae and that Epipompilinae sensu Shimizu (1994) was nested within Ctenocerinae; neither should retain their status as a separate subfamily. Lastly, Chirodamus s .s., which historically has been a member of the Pepsinae, is placed within the Pompilinae with reservations rather than erecting a new subfamily. After these allowances were made, a strict consensus tree gave the following relationships: (Ceropalinae + (Pepsinae + (Ctenocerinae + Pompilinae))).  相似文献   

19.
The complete mitochondrial genome of Tonkinacris sinensis is 15,627 bp long and contains13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and one A + T-rich region. The gene order and orientation are identical to those of other Orthoptera species, containing the rearrangement of trnD and trnK. Intriguingly, a tRNASer-like gene exists on the N strand between the trnSUCN and nad1 genes. The length of this gene is 110 bp, and it has a typical clover-leaf structure, an anticodon, and a high cove score (23.49). On its clover-leaf structure, on the anticodon arm, there is a 41 bp intron with an unknown function. Here, phylogenetic analysis was conducted based on 13 PCGs of 30 species from 9 subfamilies of Acrididae to understand their phylogenetic relationships. According to the phylogenetic tree, the relationship among the 9 subfamilies within Acrididae was as follows: (Spathosterninae + (Oxyinae + (Catantopinae + (Calliptaminae + (Cyrtacanthacridinae + (Melanoplinae + (Gomphocerinae + (Oedipodinae + Acridinae)))))))).  相似文献   

20.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号