首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: Proliferating cell nuclear antigen (PCNA) is a key component of the DNA replication machinery involved in the process of DNA elongation, recombination, methylation and repair. We have used PCNA fused with green fluorescent protein (GFP-PCNA) as a convenient tool to show the progress of S-phase in single embryos in vivo. Here we make a comparison between Hoechst 33342 and GFP-PCNA as in vivo event markers for DNA synthesis. Hoechst 33342 and DAPI (4,6-diamidino-2-phenylindole) have been used as a simple and rapid method for assessing membrane permeability and staining DNA in mammalian cells. However, it is difficult to use these dyes in living embryos during cell cycle progression studies over long periods of time as they are phototoxic. Moreover, though Hoechst staining reveals nuclear morphology, it gives no information about the progress of S-phase. RESULTS: We have microinjected or expressed a GFP-PCNA chimera to develop a method which enables visualization of S-phase in sea urchin and Caenorhabditis elegans embryos during the first and subsequent embryonic cell cycles and in Drosophila stage 4 embryos during syncytial nuclear divisions. We find that nuclear accumulation of GFP-PCNA correlates with S-phase onset. Loss of the chimera from the nucleus occurs when the nuclear envelope breaks down at mitosis. CONCLUSIONS: GFP-PCNA is a accurate and non-toxic marker of S-phase in embryos during early development.  相似文献   

2.
3.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

4.
The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins.  相似文献   

5.
6.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

7.
Here we report for the first time the ultrastructural localization of DNA replication sites in the nucleus of plant cells and the timing of replication through the pollen developmental programme by proliferating cell nuclear antigen (PCNA) immunogold labelling. Replication sites were identified by labelling with anti-PCNA antibodies in fibrils of the interchromatin region close to the condensed chromatin, defining a perichromatin subdomain in the interchromatin space where DNA replication takes place. The same nuclear structures are decorated by anti-BrdU (5-bromo-2'-deoxyuridine) immunogold after short pulses of BrdU labelling. Double immunogold labelling for PCNA and DNA show colocalization on these perichromatin structures. PCNA immunoelectron microscopy also allows correlation of replicative activity with the dynamics of chromatin condensation. DNA replication was also monitored at different phases during pollen development by PCNA immunoelectron microscopy, revealing two peaks of DNA synthesis, at the beginning (early tetrad), and the end (late vacuolate), of microspore interphase. High-resolution autoradiography after [3H]thymidine incorporation also showed high replicative activity at the same two periods of microspore interphase. In the bicellular pollen grain, PCNA immunogold labelling revealed that DNA replication in the generative cell starts at an intermediate stage of pollen maturation, whereas the vegetative nucleus does not replicate and is arrested in G1. The use of anti-PCNA antibodies at the ultrastructural level is an easier, faster and more feasible method than the detection of in vivo-incorporated nucleotides, especially in plant systems with long cell cycles. PCNA immunogold labelling is, therefore, proposed as an efficient marker for mapping the sites and timing of replication at the electron microscopy level.  相似文献   

8.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

9.
The mechanism by which a cell protects itself from the lethal effects of heat shock and other stress-inducing agents is the subject of much research. We have investigated the relationship between heat-induced damage to DNA replication machinery and the lethal effects of heat shock, in S-phase cells, which are more sensitive to heat shock than either G1 or G2. We found that maintaining cells in aphidicolin, which prevents the passage of cells through S-phase, can rescue S-phase HeLa cells from the lethal effects of heat shock. When S-phase, HeLa cells were held for 5-6 h in 3 microM aphidicolin the measured clonogenic survival was similar to that for exponentially growing cells. It is known, that heat shock induces denaturation or unfolding of proteins, rendering them less soluble and more likely to co-isolate with the nuclear matrix. Here, we show that enhanced binding of proteins involved in DNA replication (PCNA, RPA, and cyclin A), with the nuclear matrix, correlates with lethality of S-phase cells following heat shock under four different experimental conditions. Specifically, the amounts of RPA, PCNA, and cyclin A associated with the nuclear matrix when cells resumed progression through S-phase correlated with cell killing. Heat-induced enhanced binding of nuclear proteins involved with other aspects of DNA metabolism, (Mrell, PDI), do not show this correlation. These results support the hypothesis that heat-induced changes in the binding of proteins associated with DNA replication factories are the potentially lethal lesions, which become fixed to lethal lesions by S-phase progression but are repairable if S-phase progression is delayed.  相似文献   

10.
Studies of DNA replication associated with the nuclear matrix have led to a radically new view of replication at the macroscopic level. It is proposed that individual replicons and their associated replicational assemblies (replisomes) are clustered together during active replication by attachment to the nuclear matrix at special sites termed 'clustersomes'. Direct visualization of replication sites in permeabilized cells by fluorescence microscopy following biotin-11-dUTP incorporation provides support for this model. Discrete replication granules are observed with sizes and numbers consistent with each granule being a site of replicon cluster synthesis. Distinct patterns of these sites are seen in different periods of S-phase. Both the individual granules and their early and late S-phase dependent patterns are strikingly maintained following extraction of the cells for in situ nuclear matrix structures. Similar results were obtained when probing in vivo sites of replication following incorporation of 5-bromodeoxyuridine. The three-dimensional organization of these replicational granules (clustersomes) is studied using confocal light microscopy and an appropriate multidimensional image analysis system.  相似文献   

11.
The spatial and temporal organization of DNA replication was investigated in living cells with a green fluorescent protein fusion to the DNA polymerase clamp PCNA. In situ extractions and photobleaching experiments revealed that PCNA, unlike RPA34, shows little if any turnover at replication sites, suggesting that it remains associated with the replication machinery through multiple rounds of Okazaki fragment synthesis. Photobleaching analyses further showed that the transition from earlier to later replicons occurs by disassembly into a nucleoplasmic pool of rapidly diffusing subcomponents and reassembly at newly activated sites. The fact that these replication sites were de novo assembled in close proximity to earlier ones suggests that activation of neighboring origins may occur by a domino effect possibly involving local changes in chromatin structure and accessibility.  相似文献   

12.
13.
We present results from a nonautoradiographic study of DNA replication in polytene chromosomes from dipteran larvae. Monoclonal antibodies with specificity for 5-bromodeoxyuridine (BrdUrd) were used to localize by indirect immunofluorescence the sites of BrdUrd incorporation and to follow the dynamics of DNA synthesis in salivary gland cells of 4th instar Chironomus thummi larvae. This technique presents numerous advantages over autoradiographic procedures and allows mapping of DNA synthesis patterns at the level of resolution of one chromosomal band. Several replication patterns were observed, classified according to characteristic features, and tentatively assigned to specific periods of the S-phase. In early S-phase, DNA synthesis is first detectable in puffs and interbands, later in bands. Most chromosomal bands appear to initiate DNA synthesis synchronously; however, in bands within centromeric and heterochromatic regions the start of synthesis is delayed. At mid S-phase, all the bands show uniform staining. Subsequent staining patterns are increasingly differential with the bands displaying characteristic fluorescence intensities. As replication progresses through the late S-phase period, the chromosomes show a decreasing number of fluorescent bands. The last bands to terminate replication are located in centromeric and heterochromatic DNA-rich regions and a few bands of low DNA content in region IIAa-c.  相似文献   

14.
The retinoblastoma tumor suppressor protein (RB) is a negative regulator of the cell cycle that inhibits both G(1) and S-phase progression. While RB-mediated G(1) inhibition has been extensively studied, the mechanism utilized for S-phase inhibition is unknown. To delineate the mechanism through which RB inhibits DNA replication, we generated cells which inducibly express a constitutively active allele of RB (PSM-RB). We show that RB-mediated S-phase inhibition does not inhibit the chromatin binding function of MCM2 or RPA, suggesting that RB does not regulate the prereplication complex or disrupt early initiation events. However, activation of RB in S-phase cells disrupts the chromatin tethering of PCNA, a requisite component of the DNA replication machinery. The action of RB was S phase specific and did not inhibit the DNA damage-mediated association of PCNA with chromatin. We also show that RB-mediated PCNA inhibition was dependent on downregulation of CDK2 activity, which was achieved through the downregulation of cyclin A. Importantly, restoration of cyclin-dependent kinase 2 (CDK2)-cyclin A and thus PCNA activity partially restored S-phase progression in the presence of active RB. Therefore, the data presented identify RB-mediated regulation of PCNA activity via CDK2 attenuation as a mechanism through which RB regulates S-phase progression. Together, these findings identify a novel pathway of RB-mediated replication inhibition.  相似文献   

15.
16.
Nuclear dynamics of PCNA in DNA replication and repair   总被引:7,自引:0,他引:7       下载免费PDF全文
The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) is central to both DNA replication and repair. The ring-shaped homotrimeric PCNA encircles and slides along double-stranded DNA, acting as a "sliding clamp" that localizes proteins to DNA. We determined the behavior of green fluorescent protein-tagged human PCNA (GFP-hPCNA) in living cells to analyze its different engagements in DNA replication and repair. Photobleaching and tracking of replication foci revealed a dynamic equilibrium between two kinetic pools of PCNA, i.e., bound to replication foci and as a free mobile fraction. To simultaneously monitor PCNA action in DNA replication and repair, we locally inflicted UV-induced DNA damage. A surprisingly longer residence time of PCNA at damaged areas than at replication foci was observed. Using DNA repair mutants, we showed that the initial recruitment of PCNA to damaged sites was dependent on nucleotide excision repair. Local accumulation of PCNA at damaged regions was observed during all cell cycle stages but temporarily disappeared during early S phase. The reappearance of PCNA accumulation in discrete foci at later stages of S phase likely reflects engagements of PCNA in distinct genome maintenance processes dealing with stalled replication forks, such as translesion synthesis (TLS). Using a ubiquitination mutant of GFP-hPCNA that is unable to participate in TLS, we noticed a significantly shorter residence time in damaged areas. Our results show that changes in the position of PCNA result from de novo assembly of freely mobile replication factors in the nucleoplasmic pool and indicate different binding affinities for PCNA in DNA replication and repair.  相似文献   

17.
Drosophila SUUR (Suppressor of UnderReplication) protein was shown to regulate the DNA replication elongation process in endocycling cells. This protein is also known to be the component of silent chromatin in polyploid and diploid cells. To mark the different cell cycle stages, we used immunostaining patterns of PCNA, the main structural component of replication fork. We demonstrate that SUUR chromatin binding is dynamic throughout the endocyle in Drosophila salivary glands. We observed that SUUR chromosomal localization changed along with PCNA pattern and these proteins largely co-localized during the late S-phase in salivary glands. The hypothesized interaction between SUUR and PCNA was confirmed by co-immunoprecipitation from embryonic nuclear extracts. Our findings support the idea that the effect of SUUR on replication elongation depends on the cell cycle stage and can be mediated through its physical interaction with replication fork.  相似文献   

18.
Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair (BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci. Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features. XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.  相似文献   

19.
《The Journal of cell biology》1994,125(6):1201-1212
The nuclear lamins form a fibrous structure, the nuclear lamina, at the periphery of the nucleus. Recent results suggest that lamins are also present as foci or spots in the nucleoplasm at various times during interphase of the cell cycle (Goldman, A. E., R. D. Moir, M. Montag- Lowy, M. Stewart, and R. D. Goldman. 1992. J. Cell Biol. 104:725-732; Bridger, J. M., I. R. Kill, M. O'Farrell, and C. J. Hutchison. 1993. J. Cell Sci. 104:297-306). In this report we demonstrate that during mid- late S-phase, nuclear foci detected with lamin B antibodies are coincident with sites of DNA replication as detected by the colocalization of sites of incorporation of bromodeoxyuridine (BrDU) or proliferating cell nuclear antigen (PCNA). The relationship between lamin B and BrDU is not maintained in the following G1 stage of the cell cycle. Furthermore, the nuclear staining patterns seen with antibodies directed against lamins A and C in mid-late S-phase do not coalign with the lamin B/BrDU-containing structures. These results imply that there is a role for lamin B in the organization of replicating chromatin during S phase.  相似文献   

20.
The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G1 and in G2 phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase δ, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号