首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages derived from tristetraprolin (TTP)-deficient mice exhibited increased tumor necrosis factor alpha (TNFalpha) release as a consequence of increased stability of TNFalpha mRNA. TTP was then shown to destabilize TNFalpha mRNA after binding directly to the AU-rich region (ARE) of the 3'-untranslated region of the TNFalpha mRNA. In mammals and in Xenopus, TTP is the prototype of a small family of three known zinc finger proteins containing two CCCH zinc fingers spaced 18 amino acids apart; a fourth more distantly related family member has been identified in Xenopus and fish. We show here that representatives of all four family members were able to bind to the TNFalpha ARE in a cell-free system and, in most cases, promote the breakdown of TNFalpha mRNA in intact cells. Because the primary sequences of these CCCH proteins are most closely related in their tandem zinc finger domains, we tested whether various fragments of TTP that contained both zinc fingers resembled the intact protein in these assays. We found that amino- and carboxyl-terminal truncated forms of TTP, as well as a 77 amino acid fragment that contained both zinc fingers, could bind to the TNFalpha ARE in cell-free cross-linking and gel shift assays. In addition, these truncated forms of TTP could also stimulate the apparent deadenylation and/or breakdown of TNFalpha mRNA in intact cells. Alignments of the tandem zinc finger domains from all four groups of homologous proteins have identified invariant residues as well as group-specific signature amino acids that presumably contribute to ARE binding and protein-specific activities, respectively.  相似文献   

2.
3.
4.
5.
6.
Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal "GY" region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ~5-fold. These data suggest that certain isoforms of AUF1 can serve as "co-activators" of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.  相似文献   

7.
Tristetraprolin (TTP) is a CCCH tandem zinc finger protein that can bind to and destabilize certain mRNAs containing AU-rich element (ARE) binding sites. In this study, a novel porcine cDNA has been isolated by expressed sequence tag assembly and subsequently confirmed by RT-PCR analysis, and designated porcine TTP (poTTP). The open reading frame of the poTTP cDNA is 981 bp, encoding 326 amino acids. The poTTP gene is approximately 2.5 kb in size and contains a single intron. Southern blotting analysis demonstrated that it is a single copy gene. Real-time quantitative PCR analysis revealed that the poTTP gene is constitutively expressed in all detected tissues, and with the highest mRNA level in lymphoid tissues spleen and thymus. Recombinant His6-tagged poTTP protein and its two zinc finger mutants (C146G and H127I) were efficiently expressed and purified from Escherichia coli BL21 (DE3), respectively. In vitro, RNA-electrophoretic mobility shift assay confirmed a direct interaction between poTTP protein and porcine TNF-α (poTNF-α) mRNA ARE probe; this interaction was eliminated when using either two zinc finger mutants of poTTP. Consistently, mutations within the ARE region prevented the binding interaction between recombinant poTTP protein and poTNF-α mRNA ARE probe. These results indicate that poTTP is an ARE-binding protein that might regulate the turnover of certain mRNAs in vivo.  相似文献   

8.
Tristetraprolin (TTP), the prototype of a small family of CCCH tandem zinc finger (TZF) domain proteins, is a physiological stimulator of instability of the mRNAs encoding tumor necrosis factor-alpha and granulocyte/macrophage colony-stimulating factor in certain cell types. TTP stimulates mRNA turnover after binding to class II AU-rich elements (AREs) within the 3'-untranslated regions of both mRNAs. In turn, this binding is dependent upon the key CCCH residues in the TZF domain. To evaluate other primary sequence requirements for ARE binding in this novel mRNA-binding domain, we mutated many of the conserved residues within the TZF domain of human TTP and evaluated the effects of these mutations on RNA binding in a cell-free system and TTP-induced mRNA instability in cell transfection experiments. These mutations revealed a number of conserved amino acids that were required for binding and begin to define the primary protein sequence requirements for this novel mRNA-binding motif. Unexpectedly, all of the point mutations that prevented TTP binding to RNA also caused an increase in steady-state levels of ARE-containing mRNAs in cell transfection experiments. Actinomycin D experiments suggested that this effect was due to inhibition of mRNA turnover. Although expression of the mutant form of TTP could also inhibit the destruction of tumor necrosis factor-alpha mRNA by wild-type TTP, the primary mechanism did not involve heterodimerization with wild-type TTP because the 293 cells used in these studies express no detectable endogenous TTP. These data suggest that TTP may act, at least in part, by physically interacting with an enzyme activity or protein complex and functionally stimulating its ability to deadenylate class II ARE-containing mRNAs.  相似文献   

9.
10.
11.
The CCCH family of tandem zinc finger proteins has recently been shown to promote the turnover of certain mRNAs containing class II AU-rich elements (AREs). In the case of one member of this family, tristetraprolin (TTP), absence of the protein in knockout mice leads to stabilization of two mRNAs containing AREs of this type, those encoding tumor necrosis factor alpha (TNFalpha) and granulocyte-macrophage colony-stimulating factor. To begin to decipher the mechanism by which these zinc finger proteins stimulate the breakdown of this class of mRNAs, we co-transfected TTP and its related CCCH proteins into 293 cells with vectors encoding full-length TNFalpha, granulocyte-macrophage colony-stimulating factor, and interleukin-3 mRNAs. Co-expression of the CCCH proteins caused the rapid turnover of these ARE-containing mRNAs and also promoted the accumulation of stable breakdown intermediates that were truncated at the 3'-end of the mRNA, even further 5' than the 5'-end of the poly(A) tail. To determine whether an intact poly(A) tail was necessary for TTP to promote this type of mRNA degradation, we inserted the TNFalpha ARE into a nonpolyadenylated histone mRNA and also attached a histone 3'-end-processing sequence to the 3'-end of nonpolyadenylated interleukin-3 and TNFalpha mRNAs. In all three cases, TTP stimulated the turnover of the ARE-containing mRNAs, despite the demonstrated absence of a poly(A) tail. These studies indicate that members of this class of CCCH proteins can promote class II ARE-containing mRNA turnover even in the absence of a poly(A) tail, suggesting that the processive removal of the poly(A) tail may not be required for this type of CCCH protein-stimulated mRNA turnover.  相似文献   

12.
13.
14.
The mouse gene Zfp36L1 encodes zinc finger protein 36-like 1 (Zfp36L1), a member of the tristetraprolin (TTP) family of tandem CCCH finger proteins. TTP can bind to AU-rich elements within the 3'-untranslated regions of the mRNAs encoding tumor necrosis factor (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), leading to accelerated mRNA degradation. TTP knockout mice exhibit an inflammatory phenotype that is largely due to increased TNF secretion. Zfp36L1 has activities similar to those of TTP in cellular RNA destabilization assays and in cell-free RNA binding and deadenylation assays, suggesting that it may play roles similar to those of TTP in mammalian physiology. To address this question we disrupted Zfp36L1 in mice. All knockout embryos died in utero, most by approximately embryonic day 11 (E11). Failure of chorioallantoic fusion occurred in about two-thirds of cases. Even when fusion occurred, by E10.5 the affected placentas exhibited decreased cell division and relative atrophy of the trophoblast layers. Although knockout embryos exhibited neural tube abnormalities and increased apoptosis within the neural tube and also generalized runting, these and other findings may have been due to deficient placental function. Embryonic expression of Zfp36L1 at E8.0 was greatest in the allantois, consistent with a potential role in chorioallantoic fusion. Fibroblasts derived from knockout embryos had apparently normal levels of fully polyadenylated compared to deadenylated GM-CSF mRNA and normal rates of turnover of this mRNA species, both sensitive markers of TTP deficiency in cells. We postulate that lack of Zfp36L1 expression during mid-gestation results in the abnormal stabilization of one or more mRNAs whose encoded proteins lead directly or indirectly to abnormal placentation and fetal death.  相似文献   

15.
16.
CCH型锌指蛋白质C3H12是进化上保守的RNA结合蛋白质,它含有5个串联的CCCH锌指结构域ZnF1-5,形成2个紧密的锌指簇ZnF1-3和ZnF4-5。早期的研究发现,C3H12可能通过与mRNA结合的方式在转录后水平调控基因的表达。然而,与C3H12结合的mRNA类型和他们的结合模式,并未通过实验得到证明。本文表达纯化了一系列C3H12截短及全长蛋白质,并合成了一些潜在RNA底物ARE9、ARE19及对照Random21。通过等温滴定量热法 (isothermal titration calorimetry, ITC) 确定了C3H12与富含腺嘌呤尿嘧啶单元 (AU-rich element, ARE) mRNA底物的结合,并揭示了互作核心区域和热力学性质。通过荧光光谱分析和微型热泳动 (microscale thermophoresis, MST)技术对ITC的结果进一步佐证。结果表明:(1) C3H12与ARE底物的相互作用是焓驱动的能量有利的 (ΔG<0) 特异性结合,结合比为1:1。(2) C3H12与ARE19的亲和力较ARE9更高(约2倍)。(3) C3H12中ZnF1-3在与ARE类底物的结合活性中发挥主导作用。(4) C3H12结构中的141个氨基酸残基的接头不直接参与和ARE底物的相互作用。本研究揭示的CCCH型锌指蛋白质C3H12与ARE底物结合模式,将为进一步在分子结构水平阐明C3H12与ARE底物结合的机制奠定基础。  相似文献   

17.
CCH型锌指蛋白质C3H12是进化上保守的RNA结合蛋白质,它含有5个串联的CCCH锌指结构域ZnF1-5,形成2个紧密的锌指簇ZnF1-3和ZnF4-5。早期的研究发现,C3H12可能通过与mRNA结合的方式在转录后水平调控基因的表达。然而,与C3H12结合的mRNA类型和他们的结合模式,并未通过实验得到证明。本文表达纯化了一系列C3H12截短及全长蛋白质,并合成了一些潜在RNA底物ARE9、ARE19及对照Random21。通过等温滴定量热法 (isothermal titration calorimetry, ITC) 确定了C3H12与富含腺嘌呤尿嘧啶单元 (AU-rich element, ARE) mRNA底物的结合,并揭示了互作核心区域和热力学性质。通过荧光光谱分析和微型热泳动 (microscale thermophoresis, MST)技术对ITC的结果进一步佐证。结果表明:(1) C3H12与ARE底物的相互作用是焓驱动的能量有利的 (ΔG<0) 特异性结合,结合比为1:1。(2) C3H12与ARE19的亲和力较ARE9更高(约2倍)。(3) C3H12中ZnF1-3在与ARE类底物的结合活性中发挥主导作用。(4) C3H12结构中的141个氨基酸残基的接头不直接参与和ARE底物的相互作用。本研究揭示的CCCH型锌指蛋白质C3H12与ARE底物结合模式,将为进一步在分子结构水平阐明C3H12与ARE底物结合的机制奠定基础。  相似文献   

18.
19.
De J  Lai WS  Thorn JM  Goldsworthy SM  Liu X  Blackwell TK  Blackshear PJ 《Gene》1999,228(1-2):133-145
Tristetraprolin (TTP), the prototype of a class of CCCH zinc finger proteins, is a phosphoprotein that is rapidly and transiently induced by growth factors and serum in fibroblasts. Recent evidence suggests that a physiological function of TTP is to inhibit tumor necrosis factor alpha secretion from macrophages by binding to and destabilizing its mRNA (Carballo, E., Lai, W.S., Blackshear, P.J., 1998. Science, 281, 1001-1005). To investigate possible functions of CCCH proteins in early development of Xenopus, we isolated four Xenopus cDNAs encoding members of this class. Based on 49% overall amino acid identity and 84% amino acid identity within the double zinc finger domain, one of the Xenopus proteins (XC3H-1) appears to be the homologue of TTP. By similar analyses, XC3H-2 and XC3H-3 are homologues of ERF-1 (cMG1, TIS11B) and ERF-2 (TIS11D). A fourth protein, XC3H-4, is a previously unidentified member of the CCCH class of vertebrate zinc finger proteins; it contains four Cx8Cx5Cx3H repeats, two of which are YKTEL Cx8Cx5Cx3H repeats that are closely related to sequences found in the other CCCH proteins. Whereas XC3H-1, XC3H-2, and XC3H-3 were widely expressed in adult tissues, XC3H-4 mRNA was not detected in any of the adult tissues studied except for the ovary. Its expression appeared to be limited to the ovary, oocyte, egg and the early embryonic stages leading up to the mid-blastula transition. Its mRNA was highly expressed in oocytes of all ages, and was enriched in the animal pole cytosol of mature oocytes. Maternal expression was also seen with the other three messages, suggesting the possibility that these proteins are involved in regulating mRNA stability in oocyte maturation and/or early embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号