首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of thyroid hormones on the cellularity of the retroperitoneal adipose tissue (R.P.A.T.) was investigated in rats that were 3, 6 and 12 weeks old. Two groups of rats were respectively made hypothyroid by the antithyroid compound propylthiouracil, or hyperthyroid by thyroxine. The number of adipocytes was less in the hypothyroid rats than in the controls; it was higher in the hyperthyroid rats without any concomitant increase in the weight of their R.P.A.T. Moreover, there was no significant correlation between adipose cell number and adipose tissue weight within any group of T4 or control rats. In all groups of rats, the number of adipose cells in the R.P.A.T. was larger in males than in females; the difference was highly significant in 12 week old control rats.  相似文献   

2.
3.
The role of thyroid hormones on lipolysis in human subcutaneous adipose tissue was investigated. Incubation of subcutaneous fat pads with thyroxine (0.1--10 000 nM) augmented the subsequent isoproterenol stimulation of lipolysis, measured by glycerol release. The basal lipolysis could not by stimulated by thyroxine. The theophylline- and dibutyryl-cyclic AMP stimulated lipolysis also could not be increased by thyroxine at these concentrations. In separate studies, the effect of thyroxine (0.01 pM--1 microM) and triiodothyronine (0.01 pM--1 microM) on cyclic AMP accumulation was examined. No effect of thyroid hormones on cyclic AMP accumulation was seen in non-isoproterenol stimulated tissue. Fat pads stimulated by isoproterenol and then treated with thyroid hormones showed marked increases in accumulation of cyclic AMP as compared to control tissue in the presence of isoproterenol alone.  相似文献   

4.
1. Oligomycin-insensitive ATPase (ATP phosphohydrolase, EC 3.6.1.3) was purified from brown adipose tissue mitochondria. It had a specific activity of 50 units/mg which could be increased up to 85 units/mg by KHCO3. The isolated enzyme represented less than 0.5% of the initial membrane proteins.2. The enzyme had a molecular weight equal to beef heart ATPase and was composed of five subunits with molecular weights of 56 200, 54 300, 33 500, 13 400 and 9500 respectively. 3. Isolated ATPase was labile while cold and was activated by the divalent cations Mn2+, Mg2+, Co2+ and Cd2+. The optimum ATP/Mg2+ ratio found was 1.58 and the enzyme had a maximum activity at pH 8.5; the Km was 220 micrometer. 4. The ATPase activity was 55% inhibited by aurovertin. The isolated enzyme enhanced the fluorescence of aurovertin, quenched by ATP and Mg2+ and enhanced by ADP. 5. Oligomycin sensitivity and cold stability of isolated ATPase was restored by its reconstitution with both brown adipose tissue and beef heart particles depleted of ATPase. 6. The results presented demonstrate that the low ATPase activity of brown adipose tissue mitochondria is due to a reduced content of ATPase.  相似文献   

5.
Steady state protein modification by carbonyl compounds is related to the rate of carbonyl adduct formation and the half-life of the protein. Thyroid hormones are physiologic modulators of both tissue oxidative stress and protein degradation. The levels of the glycation product N(epsilon)-fructoselysine (FL) and those of the oxidation products, N(epsilon)-(carboxymethyl)lysine (CML) and malondialdehyde-lysine (MDA-lys), identified by GC/MS in liver proteins, decreased significantly in hyperthyroid rats, as well as (less acutely) in hypothyroid animals. Immunoblotting of liver proteins for advanced glycation end-products (AGE) is in agreement with the results obtained by GC/MS. Cytosolic proteolytic activity against carboxymethylated foreign proteins measured in vitro was significantly increased in hypo- and hyperthyroidism. Oxidative damage to DNA, estimated as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG), did not show significant differences between groups. The results suggests that the steady state levels of these markers depend on the levels of thyroid hormones, presumably through their combined effects on the rates of protein degradation and oxidative stress, whereas DNA is more protected from oxidative damage.  相似文献   

6.
Incorporation of [32P]Pi into phosphatidic acid and phosphatidylinositol of hamster epididymal adipocytes was partially inhibited by 3-isobutyl-1-methylxanthine. This effect of 3-isobutyl-1-methylxanthine was antagonized by isopropyl-N6-phenyladenosine but not by 2',5'-dideoxyadenosine, prostaglandin E1 or clonidine. N6-Phenylisopropyladenosine did not affect incorporation of [32P]Pi into phosphatidic acid or phosphatidylinositol when 3-isobutyl-1-methylxanthine was not present. In contrast with 3-isobutyl-1-methylxanthine inhibition of [32P]Pi incorporation into phospholipids, which was blocked only by N6-phenylisopropyladenosine, accelerated lipolysis was blocked by prostaglandin E1, clonidine and 2',5'-dideoxyadenosine as well as by N6-phenylisopropyladenosine. Phospholipid labelling was also decreased in the presence of adenosine deaminase, but not in the presence of isoprenaline (isoproterenol). The stimulatory effect of N6-phenylisopropyladenosine on [32P]Pi incorporation into phospholipids in cells exposed to 3-isobutyl-1-methylxanthine was evident as soon as 3 min after addition of the adenosine analogue and maximum 10 min after its addition. As observed by others, [32P]Pi incorporation into phospholipids was increased by the alpha 1-selective agonist methoxamine. The stimulatory effect of methoxamine occurred with a time course similar to that of N6-phenylisopropyladenosine and was present at nearly equal magnitude in the absence or presence of 3-isobutyl-1-methylxanthine. The inhibitory effects of 3-isobutyl-1-methylxanthine and adenosine deaminase on phospholipid labelling are attributed to blockade of the action, or to the enzymic removal, of adenosine formed in and released from the fat-cells during their incubation. Supporting this view is the selective reversal of the actions of 3-isobutyl-1-methylxanthine and of adenosine deaminase by N6-phenylisopropyladenosine. These findings suggest an important role for endogenous adenosine in regulation of phospholipid turnover in adipocytes.  相似文献   

7.
In brown fat of newborn rats the serotonin (5HT) content is high during the first five days of life. This may play a part in the lipid repletion of the tissue, lipids being the main fuel for nonshivering thermogenesis. Subsequently 5HT increases more in young rats reared at 16 degrees C than in those reared at 28 degrees C but to a lesser extent than norepinephrine (NE) content. A possible role of 5HT in thermoregulation of the rat during the early postnatal period is discussed.  相似文献   

8.
Rat adipose tissue was digested with collagenase and separated into adipocytes and stromal-vascular cells. The adipocytes accounted for 40% of the total adipose tissue adenosine deaminase activity, 32% of 5'-nucleotidase activity and 87% of adenosine kinase activity. This distribution suggests that adipocyte are the major cell type involved in adenosine utilization in adipose tissue. Furthermore, it suggests that the high sensitivity of isolated adipocytes to adenosine is representative of their sensitivity of isolated adipocytes to adenosine is representative of their sensitivity in vivo.  相似文献   

9.
The objective of this study was to determine whether obese human adipose tissue contains preformed stores of leptin and their relationship to secreted leptin. Detergent increased detectable leptin by about twofold, suggesting that leptin is stored in a membrane-bound location. Subcutaneous tissue leptin was approximately 1.6-fold higher than omental, paralleling known differences in leptin secretion and expression. The amount of leptin secreted during a 3-h incubation was similar to that of extractable tissue leptin. Tissue leptin levels were maintained over the incubation. Inhibition of protein synthesis decreased tissue leptin content but did not decrease leptin secretion until after 3 h of incubation. Culture of adipose tissue for 2 days with the combination of insulin and dexamethasone, but not with either hormone alone, increased tissue leptin content about twofold in both depots. Although insulin did not affect tissue leptin content, it potentiated leptin secretion (as a % of tissue stores). These data suggest that adipose tissue leptin storage and secretion per se are regulated. Regulation of the release of preformed leptin may modulate serum leptin levels in obese humans.  相似文献   

10.
11.
Endocrinology of adipose tissue.   总被引:7,自引:0,他引:7  
  相似文献   

12.
1. Uncoupled oxidative phosphorylation in isolated guinea pig brown-adipose-tissue mitochondria is reflected by a low phosphorylation state of adenosine phosphates in the mitochondrial matrix and in the extramitochondrial space during oxidation of succinate or glycerol 1-phosphate in the presence of serum albumin and 100 muM ADP. Recoupling of respiration and phosphorylation in the mitochondria is indicatdd by a dramatic increase in the phosphorylation state of adenine nucleotides in both compartments, when substrates inducing substrate level phosphorylation are respired. In this case ATP/ADP ratios in the extramitochondrial compartment are 10-15 times higher than in the mitochondrial matrix. 2. Recoupling mediated by substrate level phosphorylation depends on the presence of extramitochondrial adenosine phosphate and on intact adenine nucleotide translocation. In the presence of substrate level phosphorylation the amount of extramitochondrial ADP required to restore energy coupling can be extremely low (20 muM ADP or 10 nmol ADP/mg mitochondrial protein respectively). If substrate level phosphorylation is prevented by rotenone or in the presence of atractyloside, 20-50 times higher amounts of extramitochondrial adenine nucleotides are necessary to cause coupled oxidative phosphorylation. The recoupling effect of ATP is significantly stronger than that of ADP. 3. GDP (100 muM) causes a rapid increase of the ATP/ADP ratio in both compartments which is independent of substrate level phosphorylation as well as of the extramitochondrial adenosine phosphate concentration and the adenine nucleotide carrier. 4. The amount of extramitochondrial adenosine phosphate in guinea pig brown-adipose-tissue (18 nmol/mg mitochondrial protein or 2.5 mM respectively) would suffice for recoupling of oxidative phosphorylation mediated by substrate level phosphorylation under conditions in vitro; this suggests that substrate level phosphorylation is of essential importance in brown fat in vivo with respect to energy conditions in the tissue during different states of thermogenesis.  相似文献   

13.
The effect of housing density of mice on the thermogenic state and capacity of their brown adipose tissue was studied. Mice were housed one, two, or six per cage at 28 degrees C for 15 days. Increased housing density suppressed the thermogenic capacity of brown adipose tissue (decreased the total amount of uncoupling protein) and decreased the thermogenic state of brown adipose tissue mitochondria (decreased GDP binding). A density of six mice per cage had a greater effect than a density of two mice per cage. The size of brown adipose tissue (wet weight and protein content), the content of mitochondria in it (cytochrome oxidase content), and the total activity of thyroxine 5'-deiodinase were not altered by housing density. We conclude that even at a temperature close to thermoneutrality (29-33 degrees C for the mouse), the occurrence of social thermoregulation (huddling) reduces the requirement for brown adipose tissue thermogenesis and results in a reduction in its thermogenic capacity. It is clearly of importance that the design of studies of mouse brown adipose tissue take into account not only the temperature at which the mice are housed, but also the number of mice housed per cage.  相似文献   

14.
The norepinephrine and dopamine content of interscapular brown adipose tissue of developing rats was studied at intervals from birth to 50 days. Throughout this period, neonatal hypothyroidism is associated with a decreased norepinephrine content and with an increased dopamine content.  相似文献   

15.
16.
The effects of adenosine on glycogen metabolism have been studied in isolated fat-pads from epididymal adipose tissue. Adenosine caused a sustained short-term increase in the incorporation of [U-14C]glucose into glycogen, as well as a stimulation of both basal and insulin-induced [1-14C]glucose oxidation. Adenosine produced changes also in the activity of glycogen synthase and phosphorylase, these effects being apparent only when glucose was present in the incubation medium. The addition of adenosine prevented the depressed synthesis of glycogen observed in the presence of dibutyryl cyclic AMP. In the presence of adenosine deaminase, the stimulation by insulin of glycogen synthesis was markedly decreased. The results suggest that adenosine may have a regulatory role on glycogen synthesis by facilitating the glucose transport.  相似文献   

17.
The aim of this study was to determine whether the increase in lipoprotein lipase activity displayed by the adipose tissue of obese (fa/fa) rats as compared with that of lean (Fa/fa) rats could be ascribed to a change in the content or in the catalytic properties of the enzyme. The question was addressed in rats of two ages: in 7-day-old suckling and in 30-day-old post-weaning pups. Inguinal fat-pads were removed surgically (7 days of age) or after killing (30 days of age), and acetone-extract powders were prepared. The relative quantity of enzyme was assessed by immunotitration using an antiserum raised in goat against purified lipoprotein lipase from rat adipose tissue. The results indicate that increases in enzyme activity in obese animals were strictly paralleled by increases in the amount of enzyme in suckling as well as in post-weaning pups. Moreover, the apparent Km values of lipoprotein lipase for its substrate triacylglycerol were identical in the two genotypes. In conclusion, the genotype-mediated increase in lipoprotein lipase activity in adipose tissue of obese Zucker rats was fully accounted for by an increase in the content of the enzyme. In addition, this work documents the mechanism of the increase in lipoprotein lipase activity during weaning, which is mediated mainly through changes in the adipose-tissue enzyme content.  相似文献   

18.
Besides having a metabolic and insulatory-supporting function, adipose tissue in endotherms also performs a thermogenic function. Thermogenic adipocytes contain specific UC-mitochondria with uncoupling protein (UCP) and produce heat. Thermogenic adipose tissue has two forms: brown adipose tissue (BAT) and convertible adipose tissue (CAT). Brown adipocytes have UC-mitochondria and express UCP throughout the entire life of small rodents, chiropterans, and insectivores. However, in other endotherms and in humans CAT participates as thermogenic tissue only during early postnatal period. Both BAT and CAT start to develop in utero, although in some animals (hamsters, marsupials) or in some particular areas (thoraco-periaortal and medio-perirenal areas in rats) development of thermogenic adipose tissue starts after birth. Postnatal development of BAT in small endotherms is characterized by quantitative changes (the amount of UC-mitochondria, UCP, and lipids). Postnatal development of CAT causes qualitative changes during which UC-mitochondria in convertible adipocytes are replaced by common, nonthermogenic C-mitochondria; vascularization of adipocytes drops to a low level and, with lipid accumulation, convertible adipocytes appear as lipid-store cells. Postnatal development of CAT can be modulated or reversed by the environmental temperature. The duration of postnatal changes varies between species; i.e., cats, rabbits and sheep, change their thermogenic form of CAT into the lipid-store form within the first postnatal month, while in humans the same process takes up to 15-20 years. In maturity all these large endotherms have CAT in lipid-store form. In light of these results, the question of participation of thermogenic adipose tissue in the regulation of human obesity needs to be answered.  相似文献   

19.
Metabolism of ruminant adipocytes involves the synthesis and mobilization of lipids. Rates of lipid synthesis from the uptake of preformed fatty acids (via lipoprotein lipase) and de novo synthesis of fatty acids are related to the energy balance. Acetate is the major carbon source for fatty acid synthesis with NADPH originating from the pentose cycle and the isocitrate cycle. Ruminant adipose tissue lacks the ability to utilize for lipogenesis those substrates that generate mitochondrial acetyl CoA because of an absence of ATP citrate-lyase and NADP-malate dehydrogenase. Lipid mobilization in ruminant adipocytes is apparently regulated via cAMP levels and a summary of the compounds investigated for lipolytic responses is presented. The control of lipid synthesis and mobilization is interrelated in ruminant adipose tissue. The coordinated manner in which these two functions are regulated is examined with regard to adipocyte responses to insulin and epinephrine. In both lipid synthesis and lipid mobilization, ruminant adipocytes are uniquely different from nonruminant adipose tissue. The physiological significance and possible basis for these species differences in adipose metabolism are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号