首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Summary Populations of highly homogeneous uninucleate and binucleate microspores ofBrassica napus cv. Topas were obtained by bud selection and percoll fractionation. The development of the uninucleate and the binucleate microspores in culture was compared to thosein vivo using the fluorochrome DAPI to stain DNA. The major developmental pathway of the uninucleate microsporesin vitro resulted in embryo formation. The characteristic of this pathway was that the first division produced two diffusely stained nuclei and subsequent divisions gave rise to a multinucleate embryoid. The second pathway which occurred in a small number of the uninucleate microspores led to callus formation. The majority of the binucleate microsporesin vitro followed the developmental pattern of their counterpartsin vivo and were not embryogenic. The embryogenic binucleate microspores produced embryos through the divisions of the vegetative nucleus.Plant Research Centre Contribution # 1147  相似文献   

2.
S. P. Otto  M. E. Orive 《Genetics》1995,141(3):1173-1187
Whether in sexual or asexual organisms, selection among cell lineages during development is an effective way of eliminating deleterious mutations. Using a mathematical analysis, we find that relatively small differences in cell replication rates during development can translate into large differences in the proportion of mutant cells within the adult, especially when development involves a large number of cell divisions. Consequently, intraorganismal selection can substantially reduce the deleterious mutation rate observed among offspring as well as the mutation load within a population, because cells rather than individuals provide the selective ``deaths' necessary to stem the tide of deleterious mutations. The reduction in mutation rate among offspring is more pronounced in organisms with plastic development than in those with structured development. It is also more pronounced in asexual organisms that produce multicellular rather than unicellular offspring. By effecting the mutation rate, intraorganismal selection may have broad evolutionary implications; as an example, we consider its influence on the evolution of ploidy levels, finding that cell-lineage selection is more effective in haploids and tends to favor their evolution.  相似文献   

3.
Nearly a century ago, Rosenvinge published a now-classic paper reporting nuclear transfer between cells of Polysiphonia during secondary pit connection (SPC) formation. While reinvestigating this phenomenon, we discovered that the uninucleate apical cell, which is the progenitor of all cells in the plant, has many times (ca. 64–128 ×) the level of nuclear DNA characteristic of nuclei of gametes or mature pericentral cells. Via a regular sequence of cell divisions, the polyploid apical cell gives rise to tiers of cells, each composed of a number of pericentral cells which surround a single central cell. A large proportion of the nuclear divisions are not accompanied by DNA replication. Thus, as the number of nuclei within elongating pericentral cells increases, the DNA level of nuclei in these cells “cascades” down to the DNA level expected for the particular life history generation (i.e., gametophyte or tetrasporophyte). In mature pericentral cells, the number of nuclei is proportional to the volume of the cell. The pattern of nuclear division, reduction in ploidy level and the timing of intercellular nuclear transfer via SPC formation is regular and characteristic of a species. Nuclei transferred from one cell to an adjacent cell participate in the further nuclear divisions of the recipient cell. The degree of polyploidy in apical cells may determine the number of cells in a “determinant” branch or even the number of cells in “indeterminant” axes. In addition, the highly polyploid state of the germinating spore and its pattern of development may provide for the rapid initial growth so characteristic of this taxon.  相似文献   

4.
Summary We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate: This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

5.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

6.
Summary A novel mutant of Escherichia coli, named cfcA1, was isolated from a temperature-sensitive dnaB42 strain, and found to have the following characteristics. Division arrest and lethality induced by inhibition of DNA replication was reduced and delayed in the cfcA1 dnaB42 strain, as compared with the parental dnaB42 strain. Two types of inhibition of division induced by the addition of nalidixic acid or hydroxyurea were suppressed by the cfcA1 mutation. Under permissive conditions for DNA replication, the colony forming ability of cfcA1 cells was significantly reduced as compared with that of cfc + cells; conversely the division rate of cfcA1 cells was higher than that of cfc + cells. The cfcA1 mutation partially restored division arrest induced in the thermosensitive ftsZ84 mutant at the restrictive temperature and suppresed the UV sensitivity of the lon mutation. The mutation was mapped at 79.2 min on the E. coli chromosome. Taking these properties into account, it is hypothesized that the cfcA gene is involved in determining the frequency of cell division per round of DNA replication by interacting with the FtsZ protein which is essential for cell division.  相似文献   

7.
In this study we have investigated the rates and spatial patterns of chromosome replication and cell elongation during the growth phase of wild-type and facultatively prey-independent mutant strains of Bdellovibrio bacteriovorus. For the facultatively prey-independent mutants, the total DNA content of synchronously growing cultures was found to increase exponentially, as the multiple chromosomes within each filamentous cell replicated simultaneously. Cell mass, measured as total cellular protein, also increased exponentially during this period, apparently by means of multiple elongation sites along the filament wall. The relative rates of DNA and protein synthesis were unbalanced during growth, however, with the cellular concentration of DNA increasing slightly faster than that of protein. The original cellular DNA: protein ratio was restored in the progeny cells by continued protein synthesis during the septation period that follows the termination of DNA replication. Because of technical problems, these experiments could not be conducted on the wild-type cells, but similar results are assumed. This unusual pattern of unbalanced growth may represent an adaptation by bdellovibrios to maximize their progeny yield from the determinate amount of substrate available within a given prey cell.  相似文献   

8.
Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. Historically, the measurement of mutation rates has relied on scoring the occurrence of rare mutations in target genes in large populations of cells. Averaging mutation rates over large cell populations assumes that new mutations arise at a constant rate during each cell division. If the mutation rate is not constant, an expanding mutator population may contain subclones with widely divergent rates of evolution. Here, we report mutation rate measurements of individual cell divisions of mutator yeast deficient in DNA polymerase ε proofreading and base-base mismatch repair. Our data are best fit by a model in which cells can assume one of two distinct mutator states, with mutation rates that differ by an order of magnitude. In error-prone cell divisions, mutations occurred on the same chromosome more frequently than expected by chance, often in DNA with similar predicted replication timing, consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations onto predicted replicons revealed that mutations were enriched in the first half of the replicon as well as near termination zones. Taken together, our findings show that individual genome replication events exhibit an unexpected volatility that may deepen our understanding of the evolution of mutator-driven malignancies.  相似文献   

9.
Summary The spontaneous occurrence of giant cells has been observed in young cultures ofLipomyces lipofer and three different genotypes ofSaccharomyces. Stained preparations of all abnormal cultures revealed that the giant cells characteristically contained more than one nucleus, the number ranging from one to six. In both genera the phenomenon was found to be transient, for rapidlygrowing cultures arising from isolated giant cells reverted, at varying rates, to populations of small uninucleate cells which appeared normal in all respects.  相似文献   

10.
We have found that cells derived from heterokaryons (HK) showing phenotypical traits, coded by the nucleus of one parental strain and by the cytoplasm of the other, may produce mitotic progeny in which the second nucleus is apparently present but not expressed. This 'concealed' nucleus can be forced to expression after growth of these cytoductants on proper selective media. Using a micromanipulator, the buds containing both parental nuclei were isolated in various crosses. Cloning these HK from a rich medium (YEPD) revealed that nearly all of them were composed of a mixture of hybrid cells and cells of one of the parents. Cells of the other parent were present in a very small proportion, if detectable at all. We showed that the percentage of concealed HK decreases when limiting the growth of the strain that serves as a donor of the concealed nucleus. Consequently, our explanation for the presence of concealed nuclei in HK is the low production rate of daughter cells containing both nuclei, which accounts for the lack of a visible phenotype in HK, together with the low replication rate (or fast nuclease degradation) of one of the nuclei. In homosexual crosses, selection allows us to switch the concealed nucleus to normal replication rate. Some abnormalities of meiosis due to hidden nuclei are shown.  相似文献   

11.
Summary The sdrA102 mutation confers upon cells the ability to replicate DNA in the absence of protein synthesis. This mutation was combined with the recA200 mutation, which renders the recA protein thermolabile, and had little effect on normal replication. However, the sdrA102 recA200 double mutant exhibited temperature-sensitive stable DNA replication: it replicated DNA continuously in the presence of chloramphenicol at 30°C, whereas at 42°C DNA replication ceased after the DNA content increased only 40–45%. Suppressor mutants (rin; recA-independent) capable of stable DNA replication at 42°C were isolated from the double mutant. The suppressor mutant retained all other recA characteristics, i.e., deficient general recombination, severe UV-sensitivity, and incapability of prophage induction in lysogens. This indicates that the rin mutation specifically suppresses the recA + dependency of stable DNA replication. It is suggested that the recA + protein stabilizes a specific structure, similar to an intermediate in recombination, which may function in the initiation of stable DNA replication.  相似文献   

12.
The phenomenon of delayed heritable lethal damage (often referred to as ``lethal mutations') in the progeny of cells which survive irradiation is now well established, but little is known of the mechanism by which this cell death occurs. Current theories suggest a generalised genomic instability affecting all cells which leads to the production of some mutations which are lethal, or alternatively that a lethal mutation gene is activated, mutated or induced by radiation and leads to persistent and random cell death at high levels in the progeny. The aim of this study was to look at the morphology of progeny of irradiated cells at various times after irradiation to establish how widespread morphological abnormalities were in the population and whether there was any evidence that such abnormalities were clonal. Using two different cell lines, the results showed that morphological evidence possibly suggestive of apoptosis occurred in the cultures after all doses of radiation and up to 45 cell doublings after exposure. There was no evidence of a decrease in the numbers of damaged or dead cells in colonies with number of divisions after irradiation, or with decreasing original radiation dose. There was a significant dose-dependent increase in the number of cells with microvilli for both cell lines. The dose-dependency of this effect did not change with number of divisions after irradiation. It is clear that morphological evidence of cellular damage persists for several generations after the initial exposure. The effects are widespread in the cell population, and their constancy over time argues strongly for a general instability and against a clonal mechanism, since clonal descendants should die out and leave undamaged survivors. The lack of evidence for necrosis or senescence together with many morphological changes in the cultures suggestive of apoptosis could indicate an active mechanism of cell death. It is concluded that survivor populations of irradiated cells from two widely different mammalian cell lines demonstrate an altered phenotype including gross morphological changes. These result in a higher probability that cell division will fail to yield two healthy progeny. Received: 22 January 1996 / Accepted in revised form: 24 September 1996  相似文献   

13.
Summary Crosses were made using strains of S. cerevisiae which carried mitochondrial markers conferring resistance to erythromycin and chloramphenicol. The effect of auxotrophic starvation of one parent prior to mating on the transmission of its mitochondrial markers was studied in different crosses relative to the presence of the cdc8 nuclear mutation (a temperature-sensitive DNA replication).In crosses between two cdc8 mutant strains, auxotrophic starvation of one of the haploid parental strains prior to mating caused a marked decrease of its mitochondrial marker transmission to the diploid progeny of the cross. The transmission decreased as a function of the time of starvation. This effect was not observed in the cross between two wild type strains and in crosses of starved cdc8 phenotypic revertants with cdc8 mutant strains. Only a small, if any, effect of starvation on mitochonrial marker transmission was observed when starved cdc8 mutant strains were crossed either with their phenotypic revettants or with the wild-type strains.In one of the haploid parental strains the starvation increased the frequency of petites as a function of starvation time, while in the other this effect was not observed.In the progeny of cdc8xcdc8 crosses (both in starvation experiments and in control crosses) an increased frequency of diploid petite cells accompanied by a decreased frequency of recombination between mitochondrial markers was noticed.The influence of the cdc8 mutation on the transmission of mitochondrial markers is discussed in terms of high frequency of molecule formation in cdc8 strains.  相似文献   

14.
It is generally believed that in cells undergoing Ig somatic hypermutation, more cell divisions result in more mutations. This is because DNA synthesis and replication is thought to play roles in the known mechanisms-cytidine deamination and subsequent conversion to thymidine, uracil-DNA glycosylase-mediated repair, mismatch repair, and DNA synthesis by error-prone polymerases. In this study, we manipulated the number of cell generations by varying the rate at which cultures of a mouse cell line were replenished with fresh medium. We found that the frequency of mutants does not necessarily increase with the number of cell generations. On the contrary, a greater number of divisions can lead to a lower frequency of mutants, indicating that cell division is not a rate-limiting step in the hypermutation process. Thus, when comparing mutation rates, we suggest that rates are more appropriately expressed as mutations per day than per cell generation.  相似文献   

15.
The nin1-1 mutant has been isolated as a temperature-sensitive mutant whose nucleus arrested at G2 phase and eventually disintegrated upon temperature upshift. In this study, a genetic event occurring in the nin1-1 mutant was found to be a frameshift mutation, resulting in a truncated protein smaller than the wild-type Nin1 protein. We found new phenotypes associated with the nin1-1 mutation: (i) rates of mitotic recombination and chromosome/plasmid loss in the nin1-1 strain were higher than those in the wild-type strain, and (ii) the mutant was more sensitive to uv irradiation than the wild-type strain. We found dotted structures in the cytoplasm of the wild-type cells by indirect immunofluorescence microscopy using the anti-Nin1 antibody. Similar results were obtained when we analyzed the localization of Nin1-β-galactosidase fusion protein formed in the cells expressing the NIN-lacZ fusion gene, which is active as NIN1, with anti-β-galactosidase antibody. The subcellular fractionation method revealed that Nin1 protein was not localized in a particular fraction of the cell lysate.  相似文献   

16.
Summary Tobacco cell lines selected for resistance to picloram (4-amino-3,5,6-trichloropicolinic acid) and plants regenerated from these cell lines manifest several traits not shown by the parental strains. Genetics analyses of the regenerated plants have permitted the sources of this variability to be identified.Tricotyledenous seedlings appeared at a much higher frequency among the progeny of a heterozygous mutant plant (PmR1/+) regenerated from culture than they did among progeny of normal regenerated plants. In crosses with the regenerated heterozygous mutant plant and with homozygous progeny of this plant (PmR1/PmR1) the frequency of tricotyly was influenced more by the generation than by the genotype of the parent plant. Therefore, it is concluded that tricotyly is a physiological response to passage through cell culture.More than half of the picloram-resistant cell lines isolated were also resistant to hydroxyurea. Segregation of these two resistances was analyzed in progeny of crosses with regenerated plants. In all cases hydroxyurea-resistance was genetically stable and inherited as a single dominant nuclear mutation (designated HuR). In crosses with plants PmR1/+ and PmR7/+ the HuR and PmR mutations assorted independently. In contrast, the HuR mutation recovered from plant PmR6/+ was linked to the PmR6 mutation.  相似文献   

17.
In this work, the studies on the previously detected phenomenon of concealed heterokaryosis in Saccharomyces cerevisiaewere continued. In genetic and Southern blotting experiments, one of the nuclei in the heterokaryon was shown to be active (capable of division and ensuring the corresponding cell phenotype), whereas the other was not expressed until the heterokaryotic clone was transferred to the medium selective for this concealed nucleus. Moreover, the concealed nucleus was able to assume the active state after fusion with the second parental nucleus. It was analyzed whether the nuclei with new marker combinations occurring in meiosis can behave as exceptional nuclei. Tetrad analysis of hybrids carrying the kar1mutation in their nuclei revealed the relatively high percentage of exceptional tetrads (more than 10%). One spore in these tetrads usually formed diploid cells capable of sporulation. The presented data of genetic and molecular biological studies testify in favor of the assumption that abnormal spores contain two nuclei, which form an illegitimate hybrid after fusion. An extraneous nucleus (termed x) has usually a genotype close to that of one of the spores in this tetrad. Thus, it was assumed that the additional DNA replication round occurs in the absence of cell division during one of meiotic divisions. Results of cytological analysis conducted by the method of specific DNA staining confirmed the existence of exceptional tetrads, one spore of which contains two nuclei.  相似文献   

18.
Summary A mutant cell line that shows high resistance to the photosynthesis-inhibiting herbicide atrazine was selected from cultured photomixotrophic Nicotiana tabacum cv. Samsun NN cells by repeated exposure to toxic levels of the herbicide. This resistance was confirmed by measurements of Hill reaction activity in isolated thylakoid membranes. Nucleotide sequencing revealed that the resistant cell line had a point mutation in its chloroplast psbA gene. The 264th codon, AGT (serine) was changed to ACT (threonine) in this mutant. This new type of mutation also conferred moderate cross-resistance to diuron and subsequently was stable in the absence of continued selection pressure.  相似文献   

19.
Summary Strain CL ofPhysarum polycephalum forms multinucleate plasmodia within clones of uninucleate amoebae. The plasmodia have the same nuclear DNA content as the amoebae. Analysis of plasmodial development, using time-lapse cinematography, showed that binucleate cells were formed as a result of nuclear division in uninucleate cells. Binucleate cells developed into plasmodia by further nuclear divisions and cell fusions. No fusions involving uninucleate cells were observed. A temporary increase in cell and nuclear size occurred at the time of binucleate cell formation.  相似文献   

20.
The behavior of nuclei during zoosporogenesis in Bryopsis plumosa (Bryopsidales, Chlorophyta) was examined by fluorescence and electron microscopy. Each mature filamentous sporophyte had a single lenticular nucleus, which was about 25 m in diameter and embedded in a thick cytoplasmic layer. At the commencement of multinucleation, giant nuclei with large vacuolated nucleoli, giant nuclei containing chromosomes, and dumbbell-shaped nuclei were observed. Sometimes, two small nuclei also appeared in the thick cytoplasm where the giant nucleus had presumably been present. Electron microscopy revealed the existence of ribbon-like structures resembling synaptonemal complexes within the nucleus having a large vacuolated nucleolus. Nuclei extended their distribution by repetitive divisions. A pair of centrioles was adjacent to the interphase nucleus. When the nuclei were distributed throughout the cell, they became localized nearly equidistantly from one another, each being surrounded by several chloroplasts. At this stage, many centrioles lay along the nuclear surface. The bulk of cytoplasm was then divided into many masses of protoplasm, each of which developed into a uninucleate, stephanokontic zoospore with a whorl of flagella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号