首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human gastric lipase (HGL) is a sulfhydryl enzyme which has been shown by Gargouri et al. (Gargouri, Y., Moreau, H., Piéroni, G. and Verger, R. (1988) J. Biol. Chem. 263, 2159-2162) to be inhibited by hydrophobic disulfides. Since HGL is involved in the digestion and absorption of dietary fats we have investigated in vitro the ability of ajoene, a natural disulfide to inactivate HGL. Ajoene is derived from ethanolic garlic extracts. The finding that ajoene inactivates HGL is consistent with the fact that it is reactive towards sulfhydryl compounds and also corroborates previous reports on the ability of garlic to lower triacylglycerol blood levels. These data may explain the age-old Mediterranean and Oriental belief in the 'blood-thinning' effects of garlic on a molecular and physiological basis.  相似文献   

3.
Native human and rabbit gastric lipases (HGL and RGL, respectively) were inactivated after modification of one sulfhydryl group/enzyme molecule. HGL and RGL were covalently labeled using 5,5'-dithiobis(2-nitro-[14C]benzoic acid) and the interaction of 2-nitro-5-thio-[14C]benzoic-acid-labeled lipases ([14C]Nbs-lipases) with monomolecular lipid films was investigated. Our results show that [14C]Nbs-lipases bind to lipid films as efficiently as native HGL or RGL. The critical surface pressure pi c and the maximal surface pressure (delta pi max) of [14C]Nbs-lipases were enhanced in comparison with those of native RGL and HGL. These changes in behavior were probably due to an increase in hydrophobicity brought about, directly or indirectly, by the binding of the Nbs radical. This chemical modification thus blocks the hydrolysis site and reinforces the hydrophobic character of the gastric lipases.  相似文献   

4.
Enantiomerically pure alkylphosphonate compounds RR′P(O)PNP (R=CnH2n+1, R′=OY with Y=CnH2n′+1 with n=n′ or nn′; PNP=p-nitrophenoxy) noted (RY), mimicking the transition state occurring during the carboxyester hydrolysis were synthesized and investigated as potential inhibitors of human gastric lipase (HGL) and human pancreatic lipase (HPL). The inhibitory properties of each enantiomer have been tested with the monomolecular films technique in addition to an enyzme linked immunosorbent assay (ELISA) in order to estimate simultaneously the residual enzymatic activity as well as the interfacial lipase binding. With both lipases, no obvious correlation between the inhibitor molar fraction (50) leading to half inhibition, and the chain length, R or Y was observed. (R11Y16)s were the best inhibitor of HPL and (R10Y11)s were the best inhibitors of HGL. We observed a highly enantioselective discrimination, both with the pure enantiomeric alkylphosphonate inhibitors as well as a scalemic mixture. We also showed, for the first time, that this enantioselective recognition can occur either during the catalytic step or during the initial interfacial adsorption step of the lipases. These experimental results were analyzed with two kinetic models of covalent as well as pseudo-competitive inhibition of lipolytic enzymes by two enantiomeric inhibitors.  相似文献   

5.
D C Phelps  Y Hatefi 《Biochemistry》1984,23(26):6340-6344
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the mitochondrial energy-linked nicotinamidenucleotide transhydrogenase (TH). Our studies [Phelps, D.C., & Hatefi, Y. (1981) J. Biol. Chem. 256, 8217-8221; Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480] suggested that the inhibition site of DCCD is near the NAD(H) binding site, because NAD(H) and competitive inhibitors protected TH against inhibition by DCCD and, unlike the unmodified TH, the DCCD-modified TH did not bind to NAD-agarose. Others [Pennington, R.M., & Fisher, R.R. (1981) J. Biol. Chem. 256, 8963-8969] could not demonstrate protection by NADH, obtained data indicating DCCD inhibits proton translocation by TH much more than hydride ion transfer from NADPH to 3-acetylpyridine adenine dinucleotide (AcPyAD), and concluded that DCCD modifies an essential residue in the proton channel of TH. The present studies show that N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) also inhibits TH. The inhibition is pseudo first order at several EEDQ concentrations, and the reaction order with respect to [EEDQ] is unity, suggesting that inhibition involves the interaction of one molecule of EEDQ with one active unit of TH. The EEDQ-modified TH reacts covalently with [3H]aniline, suggesting that the residue modified by EEDQ is a carboxyl group. More significantly, it has been shown that the absorbance change of oxonol VI at 630 minus 603 nm is a reliable reporter of TH-induced membrane potential formation in submitochondrial particles and that TH-catalyzed hydride ion transfer from NADPH to AcPyAD and the membrane potential induced by this reaction are inhibited in parallel by either DCCD or EEDQ.  相似文献   

6.
Human gastric lipase (HGL) is a lipolytic enzyme that is secreted by the chief cells located in the fundic part of the stomach. HGL plays an important role in lipid digestion, since it promotes the subsequent hydrolytic action of pancreatic lipase in duodenal lumen. Physiological studies have shown that HGL is able of acting not only in the highly acid stomach environment but also in the duodenum in synergy with human pancreatic lipase (HPL). Recombinant HGL (r-HGL) was expressed in the baculovirus/insect cell system in the form of an active protein with a molecular mass of 45 kDa. The specific activities of r-HGL were found to be similar to that of the native enzyme when tested on various triacylglycerol (TG) substrates. The 3-D structure of r-HGL was the first solved within the mammalian acid lipase family. This globular enzyme (379 residues) shows a new feature, different from the other known lipases structures, which consists of a core domain having the alpha/beta hydrolase fold and a cap domain including a putative 'lid' of 30 residues covering the active site of the lipase (closed conformation). HPL is the major lipolytic enzyme involved in the digestion of dietary TG. HPL is a 50 kDa glycoprotein which is directly secreted as an active enzyme. HPL was the first mammalian lipase to be solved structurally, and it revealed the presence of two structural domains: a large N-terminal domain (residues 1-336) and a smaller C-terminal domain (residues 337-449). The large N-terminal domain belongs to the alpha/beta hydrolase fold and contains the active site. A surface loop called the lid domain (C237-C261) covers the active site in the closed conformation of the lipase. The 3-D structure of the lipase-procolipase complex illustrates how the procolipase might anchor the lipase at the interface in the presence of bile salts: procolipase binds to the C-terminal domain of HPL and exposes the hydrophobic tips of its fingers at the opposite site of its lipase-binding domain. These hydrophobic tips help to bring N-terminal domain into close conformation with the interface where the opening of the lid domain probably occurs. As a result of all these conformational changes, the open lid and the extremities of the procolipase form an impressive continuous hydrophobic plateau, extending over more than 50 A. This surface might able to interact strongly with a lipid-water interface. The biochemical, histochemical and clinical studies as well as the 3-D structures obtained will be a great help for a better understanding of the structure-function relationships of digestive lipases.  相似文献   

7.
T E Garabedian  R G Yount 《Biochemistry》1991,30(42):10126-10132
The active-site topology of smooth muscle myosin has been investigated by direct photoaffinity-labeling studies with [3H]ADP. Addition of vanadate (Vi) and Co2+ enabled [3H]ADP to be stably trapped at the active site (t1/2 greater than 5 days at 0 degrees C). The extraordinary stability of the myosin.Co2+.[3H]ADP.Vi complex allowed it to be purified free of excess [3H]ADP before irradiation began and ensured that only active-site residues became labeled. Following UV irradiation, approximately 10% of the trapped [3H]ADP became covalently attached at the active site. All of the [3H]ADP incorporated into the 200-kDa heavy chain, confirming earlier results using untrapped [alpha-32P]ATP [Maruta, H., & Korn, E. (1981) J. Biol. Chem. 256, 499-502]. After extensive trypsin digestion of labeled subfragment 1, HPLC separation methods combined with alkaline phosphatase treatment allowed two labeled peptides to be isolated. Sequence analysis of both labeled peptides indicated that Glu-185 was the labeled residue. Since Glu-185 has been previously identified as a residue at the active site of smooth myosin using [3H]UDP as a photolabel [Garabedian, T. E., & Yount, R. G. (1990) J. Biol. Chem. 265, 22547-22553], these results provide further evidence that Glu-185, located immediately adjacent to the glycine-rich loop, is located in the purine binding pocket of the active site of smooth muscle myosin.  相似文献   

8.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

9.
P A Bartlett  C K Marlowe 《Biochemistry》1987,26(26):8553-8561
A number of phosphonamidate and phosphonate tripeptide analogues have been studied as transition-state-analogue inhibitors of the zinc endopeptidase thermolysin. Those with the form Cbz-GlyP(Y)Leu-X [ZGP(Y)LX, X = NH2 or amino acid, Y = NH or O linkage] are potent (Ki = 9-760 nM for X = NH, 9-660 microM for X = O) but otherwise ordinary in their binding behavior, with second-order rate constants for association (kon) greater than 10(5) M-1 s-1. Those with the form Cbz-XP(Y)-Leu-Ala [ZXP(Y)LA,XP = alpha-substituted phosphorus amino acid analogue] are similarly potent (Ki for ZFPLA = 68 pM) but slow binding (kon less than or equal to 1300 M-1 s-1). Several kinetic mechanisms for slow binding behavior are considered, including two-step processes and those that require prior isomerization of inhibitor or enzyme to a rare form. The association rates of ZFPLA and ZFP(O)LA are first order in inhibitor concentration up to 1-2 mM, indicating that any loose complex along the binding pathway must have a dissociation constant above this value. The crystallographic investigation described in the preceding paper [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry (preceding paper in this issue)] identifies a specific water molecule in the active site that may hinder binding of the alpha-substituted inhibitors. The implication of this observation for a mechanism for slow binding is discussed.  相似文献   

10.
The beta-ketoacyl-acyl carrier protein (ACP) synthases are key regulators of type II fatty acid synthesis and are the targets for two natural products, thiolactomycin (TLM) and cerulenin. The high resolution structures of the FabB-TLM and FabB-cerulenin binary complexes were determined. TLM mimics malonyl-ACP in the FabB active site. It forms strong hydrogen bond interactions with the two catalytic histidines, and the unsaturated alkyl side chain interaction with a small hydrophobic pocket is stabilized by pi stacking interactions. Cerulenin binding mimics the condensation transition state. The subtle differences between the FabB-cerulenin and FabF-cerulenin (Moche, M., Schneider, G., Edwards, P., Dehesh, K., and Lindqvist, Y. (1999) J. Biol. Chem. 244, 6031-6034) structures explain the differences in the sensitivity of the two enzymes to the antibiotic and may reflect the distinct substrate specificities that differentiate the two enzymes. The FabB[H333N] protein was prepared to convert the FabB His-His-Cys active site triad into the FabH His-Asn-Cys configuration to test the importance of the two His residues in TLM and cerulenin binding. FabB[H333N] was significantly more resistant to both antibiotics than FabB and had an affinity for TLM an order of magnitude less than the wild-type enzyme, illustrating that the two-histidine active site architecture is critical to protein-antibiotic interaction. These data provide a structural framework for understanding antibiotic sensitivity within this group of enzymes.  相似文献   

11.
Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides.  相似文献   

12.
Triacylglycerol analogue p-nitrophenyl phosphonates specifically react with the active-site serine of lipolytic enzymes to give covalent lipase-inhibitor complexes, mimicking the first transition state which is involved in lipase-mediated ester hydrolysis. Here we report on a new type of phosphonate inhibitors containing a polarity-sensitive fluorophore to monitor micropolarity around the active site of the enzyme in different solvents. The respective compounds are hexyl and methyl dimethylamino-naphthalenecarbonylethylmercaptoethoxy-phosphonates. The hexyl phosphonate derivative was reacted with lipases from Rhizopus oryzae (ROL), Chromobacterium viscosum (CVL), and Pseudomonas cepacia (PCL). The resulting lipid-protein complexes were characterized in solution with respect to water penetration into the lipid binding site and the associated conformational changes of the proteins as a consequence of solvent polarity changes. We found that the accessibility of the lipid-binding site in all lipases studied was lowest in water. It was much higher when the protein was dissolved in aqueous ethanol. These biophysical effects may contribute to the previously observed dramatic changes of enzyme functions such as activity and stereoselectivity depending on the respective solvents.  相似文献   

13.
The active site of chicken gizzard myosin was labeled by direct photoaffinity labeling with [3H]UDP. [3H] UDP was stably trapped at the active site by addition of vanadate (Vi) and Co2+. The extraordinary stability of the myosin.Co2+.[3H]UDP.Vi complex (t1/2 greater than 5 days at 0 degrees C) allowed it to be purified free of extraneous [3H]UDP before irradiation began. Upon UV irradiation, greater than 60% of the trapped [3H]UDP was photoincorporated into the active site. Only the 200-kDa heavy chain was labeled, confirming earlier results (Maruta, H., and Korn, E. (1981) J. Biol. Chem. 256, 499-502) using [3H]UTP. Extensive tryptic digestion of photolabeled myosin subfragment 1 followed by high performance liquid chromatography separations and removal of nucleotide phosphates by treatment with alkaline phosphatase allowed two labeled peptides to be isolated. Sequencing of the labeled peptides and radioactive counting showed that Glu185 was the residue labeled. Since UDP is a "zero-length" cross-linker, Glu185 is located at the purine-binding pocket of the active site of smooth myosin and adjacent to the glycine-rich loop which binds the polyphosphate portion of ATP. This Glu residue is conserved in smooth and nonmuscle myosins and is the same residue identified previously by [3H]UTP photolabeling in Acanthamoeba myosin II (Atkinson, M. A., Robinson, E. A., Appella, E., and Korn, E. D. (1986) J. Biol. Chem. 261, 1844-1848).  相似文献   

14.
The recent discovery of free oligosaccharides typical for the complex type of glycan chains terminating with a free di-N-acetylchitobiosyl structure in certain fish eggs and early embryos (Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H., and Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Seko, A., Kitajima, K., Iwasaki, M., Inoue, S., and Inoue, Y. (1989) J. Biol. Chem. 264, 15922-15929; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., and Inoue, Y. (1989) J. Biol. Chem. 264, 18520-18526) led us to find an enzyme responsible for detachment of N-linked glycan chains from glycoproteins by hydrolyzing the beta-aspartyl-glucosylamine linkage in Oryzias latipes embryos. The enzyme, peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase or peptide:N-glycosidase (PNGase), was partially (2090-fold) purified, and the reaction site at which this enzyme acts was specified by analysis and identification of the reaction products. This is the first demonstration showing PNGase in animal sources, although the presence of PNGases was reported in a variety of plant extracts and bacteria. Thus, the commonality of this type of enzyme is now demonstrated, and the possible physiological role of PNGase in de-N-glycosylation as a basic biologic process is proposed.  相似文献   

15.
The molecular structures of three phosphorus-based peptide inhibitors of aspartyl proteinases complexed with penicillopepsin [1, Iva-L-Val-L-Val-StaPOEt [Iva = isovaleryl, StaP = the phosphinic acid analogue of statine [(S)-4-amino-(S)-3-hydroxy-6-methylheptanoic acid] (IvaVVStaPOEt)]; 2, Iva-L-Val-L-Val-L-LeuP-(O)Phe-OMe [LeuP = the phosphinic acid analogue of L-leucine; (O)Phe = L-3-phenyllactic acid; OMe = methyl ester] [Iva VVLP(O)FOMe]; and 3, Cbz-L-Ala-L-Ala-L-LeuP-(O)-Phe-OMe (Cbz = benzyloxycarbonyl) [CbzAALP(O)FOMe]] have been determined by X-ray crystallography and refined to crystallographic agreement factors, R ( = sigma parallel to F0 magnitude of - Fc parallel to/sigma magnitude of F0), of 0.132, 0.131, and 0.134, respectively. These inhibitors were designed to be structural mimics of the tetrahederal transition-state intermediate encountered during aspartic proteinase catalysis. They are potent inhibitors of penicillopepsin with Ki values of 1, 22 nM; 2, 2.8 nM; and 3, 1600 nM, respectively [Bartlett, P. A., Hanson, J. E., & Giannousis, P. P. (1990) J. Org. Chem. 55, 6268-6274]. All three of these phosphorus-based inhibitors bind virtually identically in the active site of penicillopepsin in a manner that closely approximates that expected for the transition state [James, M. N. G., Sielecki, A.R., Hayakawa, K., & Gelb, M. H. (1992) Biochemistry 31, 3872-3886]. The pro-S oxygen atom of the two phosphonate inhibitors and of the phosphinate group of the StaP inhibitor make very short contact distances (approximately 2.4 A) to the carboxyl oxygen atom, O delta 1, of Asp33 on penicillopepsin. We have interpreted this distance and the stereochemical environment of the carboxyl and phosphonate groups in terms of a hydrogen bond that most probably has a symmetric single-well potential energy function. The pro-R oxygen atom is the recipient of a hydrogen bond from the carboxyl group of Asp213. Thus, we are able to assign a neutral status to Asp213 and a partially negatively charged status to Asp33 with reasonable confidence. Similar very short hydrogen bonds involving the active site glutamic acid residues of thermolysin and carboxypeptidase A and the pro-R oxygen of bound phosphonate inhibitors have been reported [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry 26, 8542-8553; Kim, H., & Lipscomb, W. N. (1991) Biochemistry 30, 8171-8180].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

17.
We report the results of efforts to strengthen and direct the natural nucleophilic activity of antibodies (Abs) for the purpose of specific cleavage of the human immunodeficiency virus-1 coat protein gp120. Phosphonate diester groups previously reported to form a covalent bond with the active site nucleophile of serine proteases (Paul, S., Tramontano, A., Gololobov, G., Zhou, Y. X., Taguchi, H., Karle, S., Nishiyama, Y., Planque, S., and George, S. (2001) J. Biol. Chem. 276, 28314-28320) were placed on Lys side chains of gp120. Seven monoclonal Abs raised by immunization with the covalently reactive analog of gp120 displayed irreversible binding to this compound (binding resistant to dissociation with the denaturant SDS). Catalytic cleavage of biotinylated gp120 by three monoclonal antibodies was observed. No cleavage of albumin and the extracellular domain of the epidermal growth factor receptor was detected. Cleavage of model peptide substrates occurred on the C-terminal side of basic amino acids, and Km for this reaction was approximately 200-fold greater than that for gp120 cleavage, indicating Ab specialization for the gp120 substrate. A hapten phosphonate diester devoid of gp120 inhibited the catalytic activity with exceptional potency, confirming that the reaction proceeds via a serine protease mechanism. Irreversible binding of the hapten phosphonate diester by polyclonal IgG from mice immunized with gp120 covalently reactive analog was increased compared with similar preparations from animals immunized with control gp120, indicating induction of Ab nucleophilicity. These findings suggest the feasibility of raising antigen-specific proteolytic antibodies on demand by covalent immunization.  相似文献   

18.
Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion in PTPs containing an asparagine in the equivalent position [Iversen, L. F., et al. (2000) J. Biol. Chem. 275, 10300-10307]. Further, we have recently demonstrated that Gly259 in PTP1B forms the bottom of a gateway that allows easy access to the active site for a broad range of substrates, while bulky residues in the same position in other PTPs cause steric hindrance and reduced substrate recognition capacity [Peters, G. H., et al. (2000) J. Biol. Chem. 275, 18201-18209]. The current study was undertaken to investigate the feasibility of structure-based design, utilizing these differences in accessibility to the active site among various PTPs. We show that a general, low-molecular weight PTP inhibitor can be developed into a highly selective inhibitor for PTP1B and TC-PTP by introducing a substituent, which is designed to address the region around residues 258 and 259. Detailed enzyme kinetic analysis with a set of wild-type and mutant PTPs, X-ray protein crystallography, and molecular modeling studies confirmed that selectivity for PTP1B and TC-PTP was achieved due to steric hindrance imposed by bulky position 259 residues in other PTPs.  相似文献   

19.
The binding of indirubin-5-sulphonate (E226), a potential anti-tumour agent and a potent inhibitor (IC(50) = 35 nm) of cyclin-dependent kinase 2 (CDK2) and glycogen phosphorylase (GP) has been studied by kinetic and crystallographic methods. Kinetic analysis revealed that E226 is a moderate inhibitor of GPb (K(i) = 13.8 +/- 0.2 micro m) and GPa (K(i) = 57.8 +/- 7.1 micro m) and acts synergistically with glucose. To explore the molecular basis of E226 binding we have determined the crystal structure of the GPb/E226 complex at 2.3 A resolution. Structure analysis shows clearly that E226 binds at the purine inhibitor site, where caffeine and flavopiridol also bind [Oikonomakos, N.G., Schnier, J.B., Zographos, S.E., Skamnaki, V.T., Tsitsanou, K.E. & Johnson, L.N. (2000) J. Biol. Chem.275, 34566-34573], by intercalating between the two aromatic rings of Phe285 and Tyr613. The mode of binding of E226 to GPb is similar, but not identical, to that of caffeine and flavopiridol. Comparative structural analyses of the GPb-E226, GPb-caffeine and GPb-flavopiridol complex structures reveal the structural basis of the differences in the potencies of the three inhibitors and indicate binding residues in the inhibitor site that can be exploited to obtain more potent inhibitors. Structural comparison of the GPb-E226 complex structure with the active pCDK2-cyclin A-E226 complex structure clearly shows the different binding modes of the ligand to GPb and CDK2; the more extensive interactions of E226 with the active site of CDK2 may explain its higher affinity towards the latter enzyme.  相似文献   

20.
Acyl phosph(on)ates represent a new class of inhibitors of beta-lactam-recognizing enzymes. Previously described members of this class were aroyl phosph(on)ates. These compounds have been shown to acylate and/or phosphylate the active site serine residue, leading to either transient or essentially irreversible inhibition [Li, N., and Pratt, R. F. (1998) J. Am. Chem. Soc.120, 4264-4268]. The present paper describes the synthesis and evaluation as inhibitors of an inverse pair of acyl phosph(on)ates that incorporate the amido side chain that represents a major substrate specificity determinant of these enzymes. Thus, N-(phenylacetyl)glycyl phenyl phosphate and benzoyl N-(benzyloxycarbonyl)aminomethyl phosphonate were prepared. The former of these compounds was found to be a substrate of typical class A and C beta-lactamases and of the DD-peptidase of Streptomyces R61; it thus acylates the active site serine. In contrast, the latter compound was an irreversible inhibitor of the above enzymes, probably by phosphonylation of the active site serine. With each of these enzymes therefore, the amido side chain rather than the acyl group dictates the orientation of the bound phosph(on)ate and thus the mode of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号