首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor receptor (VEGFR)-2 plays a critical role in vasculogenesis during embryonic development and pathological angiogenesis, but little is known about the molecular mechanisms governing its functions. Here we investigated the role of tyrosine 1212 on mouse VEGFR-2 autophosphorylation and its signal transduction relay in endothelial cells. Mutation of tyrosine 1212 on VEGFR-2 to phenylalanine severely impaired the ligand-dependent autophosphorylation of VEGFR-2 and its ability to associate with and activate Src. This mutation also reduced the VEGFR-2 ability to phosphorylate phospholipase Cgamma1 and mitogen-activated protein kinase (MAPK). Unlike mutation of tyrosine 1212 to phenylalanine, replacement of tyrosine 1212 with glutamic acid preserved the ligand-dependent activation of VEGFR-2 and activation of VEGFR-2-associated signaling proteins including Src, phospholipase Cgamma1, and MAPK. Further analysis showed that Src activation is not required for activation of VEGFR-2, since cells co-expressing wild type receptor with kinase dead Src or wild type Src displayed no apparent effect in the ligand-dependent autophosphorylation of VEGFR-2. Similarly, expression of wild type VEGFR-2 in fibroblast (SYF) cells obtained from the triple knockout Src family kinases showed normal ligand-dependent autophosphorylation. Collectively, these results suggest that phosphorylation of tyrosine 1212 of VEGFR-2 plays a crucial role in the activation of VEGFR-2 and subsequently VEGFR-2-mediated angiogenesis.  相似文献   

2.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

3.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is constitutively expressed in lymphatic vessels and transiently in endothelial cells of blood vessels during angiogenesis. Here we report that VEGFR-3 localizes in the caveolae membrane of endothelial cells and co-immunoprecipitates with caveolin-1. Caveolin-1 silencing or its depletion from the cell membrane by cholesterol increases VEGFR-3 autophosphorylation, suggesting that caveolin acts as a negative regulator of VEGFR-3 activity. Receptor activation induces caveolin-1 phosphorylation on tyrosine residues including tyrosine 14. Cell treatment with Src or Abl inhibitors PP2 or STI571, prior to receptor stimulation, affects caveolin-1 phosphorylation without affecting receptor autophosphorylation, suggesting that both Src and Abl are involved in VEGFR-3-dependent caveolin-1 phosphorylation. Caveolin-1 phosphorylation in Src/Fyn/Yes knockout cells demonstrated that Abl phosphorylates caveolin-1 independently from Src family members. These results suggest a functional interaction between VEGFR-3 and caveolin-1 to modulate endothelial cell activation during angiogenesis.  相似文献   

4.
Activation loop tyrosine autophosphorylation is an essential requirement for full kinase activation of receptor tyrosine kinases (RTKs). However, mechanisms involved are not fully understood. In general, kinase domains of RTKs are folded into two main lobes, NH2- and COOH-terminal lobes. The COOH-terminal lobe of vascular endothelial growth factor receptor-2 (VEGFR-2) is folded into seven alpha-helices (alphaD-alphaI). In the studies presented here we demonstrate that leucine residues of helix I (alphaI) regulate tyrosine autophosphorylation and phosphotransferase activity of VEGFR-2. The presence of leucines 1158, 1161, and 1162 are essential for tyrosine autophosphorylation and kinase activation of VEGFR-2 and are involved in helix-helix packing via hydrophobic interactions. The presence of leucine 1158 is critical for kinase activation of VEGFR-2 and appears to interact with alphaE, alphaF, alphaH, and beta7. The analogous residue, leucine 957 on platelet-derived growth factor receptor-beta and leucine 910 on colony stimulating factor-1R are also found to be critical for tyrosine autophosphorylation of these receptors. Leucines 1161 and 1162 are also involved in helix-helix packing but they play a less critical role in VEGFR-2 activation. Thus, we conclude that leucine motif-mediated helix-helix interactions are critical for kinase regulation of type III RTKs. This mechanism is likely to be shared with other kinases and might provide a basis for the design of a novel class of tyrosine kinase inhibitors.  相似文献   

5.
Two-component systems are one of the most prevalent mechanisms by which bacteria sense, respond and adapt to changes in their environment. The activation of a sensor histidine kinase leads to autophosphorylation of a conserved histidine residue followed by transfer of the phosphoryl group to a cognate response regulator in an aspartate residue. The search for antibiotics that inhibit molecular targets has led to study prokaryotic two-component systems. In this study, we characterized in vitro and in vivo the BaeSR two-component system from Salmonella Typhimurium and evaluated its role in mdtA regulation in response to ciprofloxacin treatment. We demonstrated in vitro that residue histidine 250 is essential for BaeS autophosphorylation and aspartic acid 61 for BaeR transphosphorylation. By real-time PCR, we showed that mdtA activation in the presence of ciprofloxacin depends on both members of this system and that histidine 250 of BaeS and aspartic acid 61 of BaeR are needed for this. Moreover, the mdtA expression is directly regulated by binding of BaeR at the promoter region, and this interaction is enhanced when the protein is phosphorylated. In agreement, a BaeR mutant unable to phosphorylate at aspartic acid 61 presents a lower affinity with the mdtA promoter.  相似文献   

6.
Vascular endothelial growth factor receptor-2 (VEGFR-2/Flk-1) is a receptor tyrosine kinase (RTK) whose activation regulates angiogenesis. The regulatory mechanisms that attenuate VEGFR-2 signal relay are largely unknown. Our study shows that VEGFR-2 promotes phosphorylation of c-Cbl, but activation, ubiquitylation, and down-regulation of VEGFR-2 are not influenced by c-Cbl activity. A structure-function analysis of VEGFR-2 and pharmacological approach revealed that down-regulation of VEGFR-2 is mediated by a distinct mechanism involving PKC. A tyrosine mutant VEGFR-2, defective in PLC-gamma1 activation underwent down-regulation efficiently in response to ligand stimulation, suggesting that activation of classical PKCs are not involved in VEGFR-2 down-regulation. Further studies showed that the ectodomain of VEGFR-2 is dispensable for PKC-dependent down-regulation. Progressive deletion of the carboxyl-terminal domain showed that at least 39 amino acids within the carboxyl-terminal domain, immediately C-terminal to the kinase domain, is required for efficient PKC-mediated down-regulation of VEGFR-2. Mutation of serine sites at 1188 and 1191, within this 39 amino acid region, compromised the ability of VEGFR-2 to undergo efficient ligand-dependent down-regulation. Altogether the results show that the regulatory mechanisms involved in the attenuation of VEGFR-2 activation is mediated by nonclassical PKCs and the presence of serine sites in the carboxyl terminal of VEGFR-2.  相似文献   

7.

Background

Vascular endothelial growth factor receptor-2 (VEGFR-2) signaling is an obligate requirement for normal development and pathological angiogenesis such as cancer and age-related macular degeneration. Although autophosphorylation of tyrosine 1173 (Y1173) of VEGFR-2 is considered a focal point for its angiogenic signal relay, however, the mechanism of phosphorylation of Y1173, signaling proteins that are recruited to this residue and their role in angiogenesis is not fully understood.

Methodology/Principal Findings

In this study we demonstrate that c-Src kinase directly through its Src homology 2 (SH2) domain and indirectly via c-Cbl binds to phospho-Y1057 of VEGFR-2. Activation of c-Src kinase by a positive feedback mechanism phosphorylates VEGFR-2 at multi-docking site, Y1173. c-Src also catalyzes tyrosine phosphorylation of IQGAP1 and acts as an adaptor to bridge IQGAP1 to VEGFR-2. In turn, IQGAP1 activates b-Raf and mediates proliferation of endothelial cells. Silencing expression of IQGAP1 and b-Raf revealed that their activity is essential for VEGF to stimulate angiogenesis in an in vivo angiogenesis model of chicken chorioallantoic membrane (CAM).

Conclusions/Significance

Angiogenesis contributes to the pathology of numerous human diseases ranging from cancer to age-related macular degeneration. Determining molecular mechanism of tyrosine phosphorylation of VEGFR-2 and identification of molecules that are relaying its angiogenic signaling may identify novel targets for therapeutic intervention against angiogenesis-associated diseases. Our study shows that recruitment and activation of c-Src by VEGFR-2 plays a pivotal role in relaying angiogenic signaling of VEGFR-2; it phosphorylates VEGFR-2 at Y1173, facilitates association and activation of IQGAP1 and other signaling proteins to VEGFR-2. IQGAP1-dependent signaling, in part, is critically required for endothelial cell proliferation, a key step in angiogenesis. Thus, Y1057 of VEGFR-2 serves to regulate VEGFR-2 function in a combinatorial manner by supporting both diversity of recruitment of angiogenic signaling proteins to VEGFR-2, and its ability to promote angiogenesis.  相似文献   

8.
To study the role of kinase dimerization in the activation of the insulin receptor (IR) and the insulin-like growth factor receptor-1 (IGF-1R), we have cloned, expressed, and purified monomeric and dimeric forms of the corresponding soluble kinase domains via the baculovirus expression system. Dimerization of the kinases was achieved by fusion of the kinase domains to the homodimeric glutathione S-transferase (GST). Kinetic analyses revealed that kinase dimerization results in substantial increases (10-100-fold) in the phosphotransferase activity in both the auto- and substrate phosphorylation reactions. Furthermore, kinase dimerization rendered the autophosphorylation reaction concentration-independent. However, whereas dimerization was required for the rapid autophosphorylation of the kinases, it was not essential for the enhanced kinase activity in substrate phosphorylation reactions. Comparison of HPLC-phosphopeptide maps of the monomeric and dimeric kinases revealed that dimerization leads to an increased phosphorylation of the regulatory activation loop of the kinases, strongly suggesting that bis- and trisphosphorylation of the activation loop are mediated by transphosphorylation within the kinase dimers. Most strikingly, limited proteolysis revealed that GST-mediated dimerization by itself had a major impact on the conformation of the activation loop by stabilizing a conformation that corresponds to the active, phosphorylated form of the kinase. Thus, in analogy to the insulin/IGF-1-ligated holoreceptors, the dimeric GST-kinases are primed to rapid autophosphorylation by an increase in the local concentration of both phosphoryl donor and phosphoryl acceptor sites and by a dimerization-induced conformational change of the activation loop that leads to an efficient transphosphorylation of the regulatory tyrosine residues.  相似文献   

9.
Janus kinases are the key enzymes involved in the initial transmission of signals in response to type I and II cytokines. Activation of the signal begins with the transphosphorylation of Jak kinases. Substrates that give rise to downstream events are recruited to the receptor complex in part by interactions with phosphorylated tyrosines. The identity of many of the phosphotyrosines responsible for recruitment has been elucidated as being receptor-based tyrosines. The ability of Jaks to recruit substrates through their own phosphotyrosines has been demonstrated for tyrosines in the kinase activation loop. Recent studies demonstrate that other tyrosines have implications in regulatory roles of Jak kinase activity. In this study, baculovirus-produced Jak2 was utilized to demonstrate that transphosphorylation of Jak kinases occurs on multiple residues throughout the protein. We demonstrate that among the tyrosines phosphorylated, those in the kinase domain occur as expected, but many other sites are also phosphorylated. The tyrosines conserved in the Jak family are the object of this study, although many of them are phosphorylated, many are not. This result suggests that conservation of tyrosines is perhaps as important in maintaining structure of the Jak family. Additionally, non-Jak family conserved tyrosines are phosphorylated suggesting that the individual Jaks ability to phosphorylated specific tyrosines may influence signals emitting from activated Jaks.  相似文献   

10.
Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo.  相似文献   

11.
Sheth PR  Watowich SJ 《Biochemistry》2005,44(33):10984-10993
Although protein tyrosine phosphatases (PTPs) are significant negative regulators of receptor tyrosine kinase (RTK)-initiated cell signaling, it is unknown how RTK oligomerization modulates the equilibrium established between kinase and phosphatase activity. To determine the impact of oligomerization on the ability of c-MET RTK to undergo dephosphorylation, we examined the relative dephosphorylation kinetics of similarly phosphorylated dimeric TPR-MET and monomeric cytoMET. Notably, we observed that the dephosphorylation kinetics of phosphorylated MET were significantly modulated by its oligomeric state, with the global dephosphorylation rate of TPR-MET severalfold slower than the dephosphorylation rate of monomeric cytoMET. Furthermore, there were important site-specific differences in the dephosphorylation patterns of cytoMET and TPR-MET. Reduced dephosphorylation activity was predicted to eliminate or reduce the requirement of ligand-dependent oligomerization for MET autophosphorylation. This was demonstrated by the rapid phosphorylation of unstimulated c-MET on its activation loop and carboxy-terminal tyrosines following pervanadate treatment of cells expressing c-MET. We conclude that the MET oligomerization state is a critical regulator of its dephosphorylation rate. Thus, oligomerization plays a role in modifying the receptor's kinase and dephosphorylation rates to change the equilibrium levels of phosphorylated and dephosphorylated receptor in response to ligand stimulation, and that this may be a general mechanism utilized by many oligomeric receptor tyrosine kinases for regulation of their activity.  相似文献   

12.
The receptor tyrosine kinases (RTKs) RET, MET, and RON all carry the Met(p+1loop)-->Thr point mutation (i.e., 2B mutation), leading to the formation of tumors with high metastatic potential. Utilizing a novel antibody array, we identified constitutive phosphorylation of STAT3 in cells expressing the 2B mutation but not wild-type RET. MET or RON with the 2B mutation also constitutively phosphorylated STAT3. Members of the EPH, the only group of wild-type RTK that carry Thr(p+1loop) residue, are often expressed unexpectedly in different types of cancers. Ectopic expression of wild-type but not Thr(p+1loop)-->Met substituted EPH family members constitutively phosphorylated STAT3. In both RTK(Metp+1loop) with 2B mutation and wild-type EPH members the Thr(p+1loop) residue is required for constitutive kinase autophosphorylation and STAT3 recruitment. In multiple endocrine neoplasia 2B (MEN-2B) patients expressing RET(M918T), nuclear enrichment of STAT3 and elevated expression of CXCR4 was detected in metastatic thyroid C-cell carcinoma in the liver. In breast adenocarcinoma cell lines expressing multiple EPH members, STAT3 constitutively bound to the promoters of MUC1, MUC4, and MUC5B genes. Inhibiting STAT3 expression resulted in reduced expression of these metastasis-related genes and inhibited mobility. These findings provide insight into Thr(p+1loop) residue in RTK autophosphorylation and constitutive activation of STAT3 in metastatic cancer cells.  相似文献   

13.
In rat adipocytes, insulin provoked rapid increases in (a) endogenous immunoprecipitable combined protein kinase C (PKC)-zeta/lambda activity in plasma membranes and microsomes and (b) immunoreactive PKC-zeta and PKC-lambda in GLUT4 vesicles. Activity and autophosphorylation of immunoprecipitable epitope-tagged PKC-zeta and PKC-lambda were also increased by insulin in situ and phosphatidylinositol 3,4,5-(PO(4))(3) (PIP(3)) in vitro. Because phosphoinositide-dependent kinase-1 (PDK-1) is required for phosphorylation of activation loops of PKC-zeta and protein kinase B, we compared their activation. Both RO 31-8220 and myristoylated PKC-zeta pseudosubstrate blocked insulin-induced activation and autophosphorylation of PKC-zeta/lambda but did not inhibit PDK-1-dependent (a) protein kinase B phosphorylation/activation or (b) threonine 410 phosphorylation in the activation loop of PKC-zeta. Also, insulin in situ and PIP(3) in vitro activated and stimulated autophosphorylation of a PKC-zeta mutant, in which threonine 410 is replaced by glutamate (but not by an inactivating alanine) and cannot be activated by PDK-1. Surprisingly, insulin activated a truncated PKC-zeta that lacks the regulatory (presumably PIP(3)-binding) domain; this may reflect PIP(3) effects on PDK-1 or transphosphorylation by endogenous full-length PKC-zeta. Our findings suggest that insulin activates both PKC-zeta and PKC-lambda in plasma membranes, microsomes, and GLUT4 vesicles by a mechanism requiring increases in PIP(3), PDK-1-dependent phosphorylation of activation loop sites in PKC-zeta and lambda, and subsequent autophosphorylation and/or transphosphorylation.  相似文献   

14.
Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone.  相似文献   

15.
Vascular endothelial growth factor (VEGF) provokes angiogenesis in vivo and stimulates growth and differentiation of endothelial cells in vitro. Although VEGF receptor-1 (VEGFR-1) and VEGFR-2 are known to be high affinity receptors for VEGF, it is not clear which of the VEGFRs are responsible for the transmission of the diverse biological responses of VEGF. For this purpose we have constructed a chimeric receptor for VEGFR-1 (CTR) and VEGFR-2 (CKR) in which the extracellular domain of each receptor was replaced with the extracellular domain of human colony-stimulating factor-1 receptor (CSF-1R), and these receptors were expressed in pig aortic endothelial (PAE) cells. We show that CKR individually expressed in PAE cells is readily tyrosine-phosphorylated in vivo, autophosphorylated in vitro, and stimulates cell proliferation in a CSF-1-dependent manner. In contrast, CTR individually expressed in PAE cells showed no significant in vivo, in vitro tyrosine phosphorylation and cell growth in response to CSF-1 stimulation. The kinase activity of CKR was essential for its biological activity, since mutation of lysine 866 to arginine abolished its in vivo, in vitro tyrosine phosphorylation and mitogenic signals. Remarkably, activation of CTR repressed CKR-mediated mitogen-activate protein kinase activation and cell proliferation. Similar effects were observed for VEGFR-2 co-expressed with VEGFR-1. Collectively, these findings demonstrate that VEGFR-2 activation plays a positive role in angiogenesis by promoting endothelial cell proliferation. In contrast, activation of VEGFR-1 plays a stationary role in angiogenesis by antagonizing VEGFR-2 responses.  相似文献   

16.
Vascular endothelial growth factor-mediated angiogenic signal transduction relay is achieved by coordinated induction of endothelial cell proliferation, migration, and differentiation. These complex cellular processes are most likely controlled by activation of both cooperative and antagonistic signals by vascular endothelial growth factor receptors (VEGFRs). Here, we investigated the contribution of tyrosine-phosphorylated residues of VEGFR-2/fetal liver kinase-1 to endothelial cell proliferation and differentiation and activation of signaling proteins. Mutation of tyrosine 1006 of VEGFR-2 to phenylalanine severely impaired the ability of this receptor to stimulate endothelial cell differentiation and tubulogenesis. Paradoxically, the mutant receptor stimulated endothelial cell proliferation far better than the wild-type receptor. Further analysis showed that tyrosine 1006 is responsible for phospholipase Cgamma1 (PLCgamma1) activation and intracellular calcium release in endothelial cells. Activation of PLCgamma1 was selectively mediated by tyrosine 1006. Mutation of tyrosines 799, 820, 949, 994, 1080, 1173, and 1221 had no measurable effect on the ability of VEGFR-2 to stimulate PLCgamma1 activation. Association of VEGFR-2 with PLCgamma1 was mainly established between tyrosine 1006 and the C-terminal SH2 domain of PLCgamma1 in vitro and in vivo. Taken together, the results indicate that phosphorylation of tyrosine 1006 is essential for VEGFR-2-mediated PLCgamma1 activation, calcium flux, and cell differentiation. More importantly, VEGFR-2-mediated endothelial cell proliferation is inversely correlated with the ability of VEGFR-2 to associate with and activate PLCgamma1.  相似文献   

17.
Fibroblast growth factor receptor (FGFR) activation leads to receptor autophosphorylation and increased tyrosine phosphorylation of several intra cellular proteins. We have previously shown that autophosphorylated tyrosine 766 in FGFR1 serves as a binding site for one of the SH2 domains of phospholipase Cy and couples FGFR1 to phosphatidylinositol hydrolysis in several cell types. In this report, we describe the identification of six additional autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654 and Y-730) on FGFR1. We demonstrate that autophosphorylation on tyrosines 653 and 654 is important for activation of tyrosine kinase activity of FGFR1 and is therefore essential for FGFR1-mediated biological responses. In contrast, autophosphorylation of the remaining four tyrosines is dispensable for FGFR1-mediated mitogen-activated protein kinase activation and mitogenic signaling in L-6 cells as well as neuronal differentiation of PC12 cells. Interestingly, both the wild-type and a mutant FGFR1 (FGFR1-4F) are able to phosphorylate Shc and an unidentified Grb2-associated phosphoprotein of 90 kDa (pp90). Binding of the Grb2/Sos complex to phosphorylated Shc and pp90 may therefore be the key link between FGFR1 and the Ras signaling pathway, mito-genesis, and neuronal differentiation.  相似文献   

18.
Insulin receptor tyrosines 1158, 1162 and 1163 are the most rapidly autophosphorylated residues following insulin binding. Although progression of these tyrosines from a bis- to tris-phosphorylated state leads to activation of the receptor tyrosine kinase towards added substrates, rather paradoxically, a receptor with a Y1158F mutation has been reported to be capable of normal activation. In the present study we demonstrate that autophosphorylation of the insulin receptor probably initiates on either of tyrosines 1158 and 1162 while autophosphorylation of tyrosine 1163 occurs predominantly late in the autophosphorylation cascade. Our results are compatible with tyrosines 1162 and 1163 being the major determinants of kinase activity and explain why wild-type insulin receptors only become active after all three of tyrosines 1158, 1162 and 1163 have been phosphorylated.  相似文献   

19.
A function-structure model for NGF-activated TRK.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mechanisms regulating transit of receptor tyrosine kinases (RTKs) from inactive to active states are incompletely described, but require autophosphorylation of tyrosine(s) within a kinase domain 'activation loop'. Here, we employ functional biological assays with mutated TRK receptors to assess a 'switch' model for RTK activation. In this model: (i) ligand binding stimulates activation loop tyrosine phosphorylation; (ii) these phosphotyrosines form specific charge pairs with nearby basic residues; and (iii) the charge pairs stabilize a functionally active conformation in which the activation loop is restrained from blocking access to the kinase catalytic core. Our findings both support this model and identify residues that form specific charge pairs with each of the three TRK activation loop phosphotyrosines.  相似文献   

20.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号