首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides. We ran a mid‐shore field experiment at four sites (two upwelling sites interspersed with two non‐upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design (n = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top‐down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions.  相似文献   

2.
Trophic cascades in a temperate seagrass community   总被引:1,自引:0,他引:1  
We assessed the relative importance of bottom–up and top–down processes in structuring an eelgrass community in Sweden, a system impacted both by eutrophication and overfishing. Using artificial seagrass as substrate, we manipulated nutrient levels and predator abundance in a full‐factorial cage‐experiment. The results revealed a seagrass community dominated by strong top–down processes controlling the aggregate biomass of mesograzers and macroalgae. In the absence of predators the large amphipod Gammarus locusta became very abundant resulting in a leaf community with low biomass of algae and smaller mobile fauna. One enclosed gobid fish predator reduced the abundance of adult G. locusta by >90%, causing a three to six times increase in the biomass of algae, smaller mesograzers and meiofauna. Numerous small predators in uncaged habitats reduced the biomass of G. locusta and other mesograzers by >95% in comparison to the fish treatment, further increasing the biomass of epiphytic algae and meiofauna. Although water column nutrient enrichment caused a temporal bloom of the filamentous macroalgae Ulva spp., no significant nutrient‐effects were found on the algal community at the end of the experiment. The only lasting nutrient‐effect was a significant increase in the biomass of G. locusta, but only in the absence of ambient predators. These results demonstrate that mesograzers can respond to enhanced food supply, increase their biomass and control the algal growth when predation rates are low. However, in the assessed system, high predation rates appear to make mesograzers functionally extinct, causing a community‐wide trophic cascade that promotes the growth of ephemeral algae. This top–down effect could penetrate down, despite a complex food‐web because the interaction strength in the community was strongly skewed towards two functionally dominant algal and grazer species that were vulnerable to consumption. These results indicate that overexploitation of gadoid fish may be linked to increased macroalgal blooms and loss of eelgrass in the area through a trophic cascade affecting the abundance of mesograzers.  相似文献   

3.
We determined whether temporal variation and succession were similar among sites with similar species composition by sampling unmanipulated and cleared plots in a high intertidal assemblage dominated by Endocladia muricata and Mastocarpus papillatus. Sampling was done for 6 years at six sites spanning over 4° of latitude in California. Ten 1×2-m permanent plots were chosen in the central portion of the assemblage at each site. Four of these served as unmanipulated controls, three were cleared (scraped and burned) in the spring of 1985, and three were cleared in the fall of 1985. The cover of sessile and density of motile species were determined by subsampling within the plots from 1985 until 1991. Recovery of the clearings was determined by their similarity to the controls. The algae E. muricata, M. papillatus, and Fucus gardneri, and the barnacle Balanus glandula, were the most abundant sessile organisms in the control plots, although the latter never exceeded 12% cover at any site. The grazing gastropods Littorina scutulata/plena, various limpets, and Tegula funebralis were the most common mobile organisms. The species composition of the common species remained constant in the control plots over the study period and there were few large changes in relative abundance. Significant seasonal variation was detected in 11 species but variation was commonly site-specific.Ephemeral algae were abundant during early succession at only two of the six sites, and barnacle cover was low (<15% cover) at four sites and moderate (15-50% cover) at the remaining two throughout succession. Recovery rate varied considerably among sites and between times of clearing (1-10%/month). Correlations between ephemeral algae and grazer abundance, and between these variables and recovery rate were not significant. The effects of grazers on recovery rate were only evident at one site where they appeared to reduce an initially high cover of ephemeral algae and delay the establishment of perennials. Some of the largest differences in recovery rate were between clearing times, associated with differences in the phenology of the dominant perennial algae. In spite of these differences, most plots recovered by the end of the study period.These results indicate that the assemblages in the control plots at each site were relatively stable and, while successional pathways and processes varied, the assemblage at most sites still recovered. Current models, based largely on biological interactions, that attempt to explain within assemblage structure and succession were not broadly applicable.  相似文献   

4.
Eastern boundary current systems are among the most productive and lucrative ecosystems on Earth because they benefit from upwelling currents. Upwelling currents subsidize the base of the coastal food web by bringing deep, cold and nutrient‐rich water to the surface. As upwelling is driven by large‐scale atmospheric patterns, global climate change has the potential to affect a wide range of significant ecological processes through changes in water chemistry, water temperature, and the transport processes that influence species dispersal and recruitment. We examined long‐term trends in the frequency, duration, and strength of continuous upwelling events for the Oregon and California regions of the California Current System in the eastern Pacific Ocean. We then associated event‐scale upwelling with up to 21 years of barnacle and mussel recruitment, and water temperature data measured at rocky intertidal field sites along the Oregon coast. Our analyses suggest that upwelling events are changing in ways that are consistent with climate change predictions: upwelling events are becoming less frequent, stronger, and longer in duration. In addition, upwelling events have a quasi‐instantaneous and cumulative effect on rocky intertidal water temperatures, with longer events leading to colder temperatures. Longer, more persistent upwelling events were negatively associated with barnacle recruitment but positively associated with mussel recruitment. However, since barnacles facilitate mussel recruitment by providing attachment sites, increased upwelling persistence could have indirect negative impacts on mussel populations. Overall, our results indicate that changes in coastal upwelling that are consistent with climate change predictions are altering the tempo and the mode of environmental forcing in near‐shore ecosystems, with potentially severe and discontinuous ramifications for ecosystem structure and functioning.  相似文献   

5.
ABSTRACT.   Although ephemeral ponds act as small hotspots of plant, invertebrate, and salamander diversity, the importance of such ponds for birds has been little studied. We hypothesized that ephemeral ponds on the Cumberland Plateau in Tennessee would support a greater abundance, richness, and diversity of birds than the surrounding hardwood forests. In 2004, we recorded all birds seen or heard in 10 min within 50-m radius circles at 25 ephemeral ponds. We repeated the counts at control sites located 150 m from each pond in the surrounding forest. To quantify potential food availability, we captured aerial invertebrates using sweep nets at four points around a subsample of eight ephemeral ponds and at an equal number of control sites. We found significantly greater bird abundance, richness, and species diversity at ephemeral ponds than at control sites, and that pond area was not associated with either bird abundance or richness. Bird community composition at pond and control sites was similar. Aerial invertebrates were significantly more abundant at ephemeral ponds than at adjacent forest sites, providing one possible explanation for greater bird abundance at ephemeral ponds.  相似文献   

6.
Light has been identified as one of the main factors affecting seaweed ecophysiology. We investigated the dependence of nutrient metabolism on sun and shade light conditions and whether episodes of upwelling of nutrient‐rich subsuperficial water could reduce the summer nutrient limitation driving physiological changes in Palmaria palmata (L.) Kuntze. We measured the major nutrient pools, photosynthetic pigments, and light curves, under sun and shade conditions during a summer period when one upwelling was recorded. The redundancy analysis (RDA) produced two clear groups: sun‐ and shade‐acclimated algae. Light was the major predictive factor. Sun‐acclimated algae exhibited higher carbon (C) and lower nitrogen (N) and phosphorus (P) content in association with the storage of floridoside (main C reserve) to benefit from higher irradiance (under nutrient limitation). Among N pools, N reserves (phycoerythrin, nitrate) were a lower proportion of the total N in sun‐acclimated algae, suggesting their degradation to fulfill the N demands of the cell. The orthophosphate content was also lower in sun‐acclimated algae, indicating its utilization as a nutrient reserve. In contrast, N within cell walls and membranes and chl a contributed to a similar proportion of the total N in sun‐ and shade‐acclimated algae, suggesting a response to sustain cell integrity. Transient high nutrient concentration due to the upwelling was unrelated to the nutrient content of the thallus. The storage of C as floridoside from high light exposure was shown to be the driving force for the metabolic adjustment of P. palmata at the end of summer before the onset of dormancy.  相似文献   

7.
Degradation of ecological resources by large-scale disturbances highlights the need to demonstrate biological properties that increase resistance to change and promote the resilience of ecosystem regimes. Coastal eutrophication is a global-scale disturbance that drives ecosystem change by increasing primary production and favouring ephemeral and bloom-forming life-forms. Recent synthesis indicates that consumption processes increase the resistance of coastal communities to nutrient loading by controlling the responses of ephemeral macroalgae. Here we suggest a similar ecological function for canopy cover by demonstrating that the presence of a canopy species modifies both resource and consumer control of bloom-forming algae associated with nutrient enrichment. We tested effects of canopy presence on the interaction between consumer and resource control, by field-manipulations of a dominant canopy forming seaweed ( Fucus vesiculosus ), grazer presence (dominated by the gastropod Littorina littorea ) and nutrient enrichment (common agricultural NPK fertilizer). Canopy cover and grazers jointly controlled strong increases of ephemeral bloom-forming algae (dominated by Ulva spp) from nutrient enrichment; nutrients increased ephemeral recruitment almost 10-fold, but only in the absence of both grazers and canopy cover. Recruitment success of the canopy-forming seaweed itself decreased additively with 56.1, 71.3 and 50.5% from independent effects of canopy cover, grazers and nutrient enrichment, respectively. A meta-analysis of nine nutrient enrichment experiments including seaweed, seagrass and stream communities, showed that in the presence of canopies average nutrient effects were reduced by more than 90% compared to without canopies. This corroborates the generality of our finding that dominating canopy species are important for aquatic ecosystems by increasing community resistance to the propagation of nutrient effects.  相似文献   

8.
Molluscan grazers can have important effects on the abundance, colonization rates, and successional pathways of algal assemblages and the entire intertidal community. In general, early successional algae are more readily consumed than corticated algae and kelps, which usually get established later in the community succession. To generalize, however, the effect of different grazers on algal assemblages must be examined on different coasts and under different scenarios. This information could help us understand the mechanisms of ecosystem processes and situations in which general models do not apply. Along the coast of Chile, humans harvest large keyhole limpets, which seem to be the only invertebrate grazers capable of controlling the dominant corticated alga Mazzaella laminarioides, a canopy-forming species that can cover extensive areas of the mid intertidal zone. In this scenario, where large limpets are harvested, the overall effects of the diverse molluscan assemblage of limpets, chitons and snails on algal succession and on corticated algae in particular are not clear. We conducted a 26-month-long experiment to evaluate the effects of molluscan grazers on mid-intertidal algal succession and to isolate the effects of Chiton granosus, the most conspicuous member of the assemblage at these tidal elevations. At sites heavily impacted by humans the molluscan grazer assemblage had strong negative effects on colonization and abundance of green algae such as ulvoids and Blidingia minima. In doing so, the grazer assemblage had a strong negative indirect effect on the establishments of chironomid fly larvae, which were only observed on green algal mats and rarely on bare rock. No significant effects were detected on epilithic microalgae, and effects on sessile invertebrates were highly variable over space and time. C. granosus also had significant negative effects on green algae but did not account for the total grazing pressure exerted by the guild. Limited foraging excursions (ca. 35 cm) from refuges and moderate site (crevice) fidelity in this species may contribute to the patchiness in green algal distribution observed in the field. Nearly 13 months after rock surface were experimentally cleared, M. laminarioides appeared in all experimental plots, but increased over three times faster in enclosures containing C. granosus than in exclosures plots or controls, suggesting that moderate levels of herbivory could actually facilitate the establishment of this alga in the succession and that the green algal cover found in the absence of grazers may delay its establishment.  相似文献   

9.
Soil disruption from open‐cut mining practices can adversely impact microbial communities and the ecosystem services that they mediate. Despite this, assessment of impacts of soil disruption, and the subsequent recovery of microbial communities is rarely studied. Monitoring of ecological restoration success on mine sites has traditionally focused on vegetation; however, most plants rely, at least in part, on associations with soil fungi for enhanced nutrient and water acquisition. Here, we used high‐throughput phylogenetic marker gene sequencing to characterize the diversity of soil fungal communities along a restoration chronosequence ranging from 3 to 23 years at a rehabilitated mine site. We used nonmined analogue sites as a baseline for comparative purposes and examined the associations of soil fungal communities with soil physicochemical and aboveground vegetation variables. Fungal richness on rehabilitated sites was significantly larger than on nonmined sites, suggesting that mixing of topsoil during stockpiling resulted in a composite microbial community. Fungal community composition was significantly influenced by edaphic variables and the length of rehabilitation, with mined sites becoming more similar to nonmined sites over time. Fungal populations associated with ectomycorrhizae were relatively more abundant than those associated with arbuscular mycorrhizae and declined in response to disturbance, but recovered over time on the woody dominated sites indicating a strong coupling of these fungi with aboveground vegetation. Our data indicate that soil fungal diversity is a useful bioindicator of soil restoration in mined sites and may complement more traditional vegetation‐based surveys.  相似文献   

10.
Summary Relationships between organisms at all trophic levels are influenced by the primary productivity of the ecosystem, and factors which enhance rates of primary production may modify trophic relationships and community structure. Nutrient enrichment of intertidal and nearshore waters leads to enhanced production by intertidal algae, and it was hypothesized that where rocky shores are washed by nutrient-rich upwelled waters, the intertidal communities should show a characteristic functional structure, based on the effects of enhanced primary production. Study sites were chosen on rocky shores in southern Africa, central Chile and the Canary Islands, in areas with and without coastal upwelling, and mid-shore community structure at these sites was analysed in terms of the abundance of certain functional guilds of organisms.It was found that algal cover and the biomass of herbivorous limpets supported per unit area on rocky shores were significantly greater in regions of coastal upwelling than in regions where upwelling did not occur. Ground cover by sessile filter-feeding organisms was significantly greater on shores in non-upwelled areas. However, correspondence analysis showed no functional aspect of intertidal community structure that was characteristic of coasts washed by upwelled waters. Primary reasons for this are probably the large variations in the nature of nutrient enrichment that accompanies upwelling, and in the nutrient status of non-upwelled areas. Other factors are man's exploitation of intertidal organisms and differences in the genetic origins of the intertidal species involved.  相似文献   

11.
Abstract. Nanocyperion plant communities occur on wet, more or less nutrient‐poor and sparsely vegetated soils in temperate climates and are characterized by tiny, very shortlived plant species. Most of these have become locally extinct. It is generally assumed that drainage and eutrophication were the most important reasons for this decrease. However, chemical analysis of soil pore water from plots on growth sites of these ephemerals showed that phosphorus availability was relatively high. In a greenhouse experiment, the growth of ephemeral species was strongly limited by the amount of available phosphorus, whereas there was little or no limitation to the growth of other plant species from this habitat. At low phosphorus concentrations, the ephemeral species reached their reproductive phase within the same period, but showed a strong reduction in the amount of flowers that were produced. We concluded that ephemeral species in particular require a minimum amount of phosphorus for reproduction. Other species on nutrient‐poor, wet soils have a longer life span and can postpone flowering in nutrient‐poor soils. In contrast to other short‐lived plant species from the same habitat, the growth of ephemeral species was barely stimulated by enhanced nitrogen availability. Apparently, the ephemerals are adapted to low nitrogen concentrations. The occurrence on nitrogen‐poor and relatively phosphorus‐rich soils suggests that this community may be very sensitive to nitrogen deposition. Reduced phosphorus availability below the minimum requirements of ephemerals, for example after acidification or the exclusion of human activities, has possibly contributed to the decrease of ephemeral plant species.  相似文献   

12.
Niche‐based selection and stochastic processes can operate simultaneously to generate spatial and temporal variation in species composition. Yet, the conditions under which ecological dynamics are dominated by niche‐based versus stochastic processes are poorly understood. Using a field experiment in early‐successional temperate grassland and null models of beta diversity, this study investigates the effects of soil nutrient supply on the relative importance of niche‐based selection versus stochastic dynamics for variation in species composition among sites. Nutrient availability was manipulated experimentally, individual seed mixtures with 25 species were sown in each experimental plot, and then stochastic and deterministic niche‐based assembly processes were allowed to happen. We found that compositional variation among grassland plots with low nutrient supply was driven by stochastic immigration and extinctions. In contrast, nutrient enrichment reduced the importance of stochasticity and imposed a deterministic environmental filter that homogenized communities through the selection of few species with greater competitive ability for light. This demonstrates that soil nutrient availability is a critical environmental feature that dictates the degree to which terrestrial plant communities are controlled by niche‐based selection versus stochastic assembly processes. Our study shows further that alternative states of eutrophic grasslands emerge from initial stochastic variation in the composition of a particular functional group of species that can become dominant at high nutrient supply. We discuss potential mechanisms underlying the shift from stochastic to niche‐driven dynamics along soil nutrient gradients.  相似文献   

13.
We studied the response of benthic algae to points of hyporheic-surface water exchange in the main channel of the Middle Fork Flathead River within the Nyack Flood Plain, Montana. We examined hyporheic exchange at 120 sites using piezometers and measuring vertical hydraulic gradient (VHG), hydraulic conductivity, and vertical discharge. We removed benthic algae from a single cobble at each site, and we used VHG to group sampling sites for statistical analysis. Algal cell density and chlorophyll a concentration were significantly higher at sites with hyporheic discharge (+VHG, upwelling) compared to both sites with hyporheic recharge (−VHG, downwelling) and sites with no hyporheic-surface water exchange (=VHG, neutral) (ANOVA, P < 0.05). The assemblages of algae at upwelling sites were also significantly different from downwelling and neutral exchange sites (ANOSIM, P < 0.05). Filamentous green algae Stigeoclonium sp. and Zygnema sp. and a chrysophyte, Hydrurus foetidus (Villars) Trevisan were abundant at upwelling sites, whereas an assemblage of diatoms Achnanthidium minutissimum (Kützing) Czarnecki, Cymbella excisa Kützing, Diatoma moniliformis Kützing, and Gomphonema olivaceoides Hustedt, were the most abundant taxa at downwelling and neutral exchange sites, occurring attached to, or in close association with the stalks of Didymosphenia geminata (Lyngbye) Schmidt. These data show that benthic algal communities are structured differently depending on the direction of hyporheic flux in the main channel of a large alluvial river, suggesting that hyporheic-surface exchange may influence the spatial distribution of main-channel benthic algae in rivers with hyporheic-surface water connectivity. Handling editor: J. Padisak  相似文献   

14.
The use of trait‐based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life‐history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our “natural experiment” was conducted along gradients of agricultural land‐use intensity (0–95% of the catchment in high‐producing pasture) and hydrological alteration (0–92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information‐theoretic model‐selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large‐bodied, non‐attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a fairly comprehensive set of traits can help shed light on the drivers of algal community composition in situations where multiple stressors are operating. Further, to understand non‐linear and non‐additive effects of such drivers, communities need to be studied along multiple gradients of natural variation or anthropogenic stressors.  相似文献   

15.
As the climate warms, there is little doubt that ecosystems of the future will look different from those we see today. However, community responses to warming in the field are poorly understood. We examined the effects of field‐based warming on intertidal communities in the Salish Sea, which is a regional thermal ‘hot spot’ and therefore a model system for studying thermally stressed communities. We manipulated temperature at three tidal heights by deploying black‐ and white‐bordered settlement plates. Black plates increased in situ substratum temperature by an average of 2.6°C (maximum temperature, 40.9°C). Barnacles fared poorly on black plates in all zones. When overall thermal stress was highest (summer in the high intertidal zone) herbivores were absent. In lower tidal zones, herbivores were abundant on white plates but were scarce on black plates. The total percent cover of algae was unaffected by the temperature treatment, despite the fact that macroalgae were expected to be the least thermally tolerant functional group. However, we did find that ephemeral green algae exhibited a delay in phenology on black plates. We also found that species richness declined and invertebrate assemblage structure was altered due to warming. Results from this year long experiment suggest that communities in thermally stressful habitats respond to warming via the interplay between species‐specific thermal responses and secondary adaptive strategies such as behavioral microhabitat selection. Declines in diversity and changes in the invertebrate assemblage were due to the decline of local thermally‐stressed species and the lack of replacement by warm‐adapted species. Given the low variation in the species pool along the northeast Pacific coastline, the arrival of warm‐adapted species to the Salish Sea may not occur over relevant time scales, leaving local communities depauperate.  相似文献   

16.
Changes in macroalgae assemblages over more than a decade are described for Sepetiba Bay, Brazil. Variations in macroalgae abundances and functional diversity were compared with older data to test the hypothesis that their diversity decreases following anthropogenic stress that negatively impact environmental characteristics. Four field sampling excursions were undertaken at two different sites from December/2012 to May/2014. Destructive sampling per effort used six box cores (25 × 25 cm) distributed randomly along a shallow sublittoral rocky shore. Biomass was used to quantify macroalgae assemblages identified to the species level. Multivariate analyses demonstrated decreases in total biomass at both sites as well as changes in community physiognomies. The predominant corticated algae found were classified as Ecological Status Group IIA, characteristic of sites in the process of degradation and indicating that anthropogenic stress had negatively affected the macroalgae communities as evaluated by the Ecological Evaluation Index.  相似文献   

17.
18.
Algal and plant production of nonphosphorus lipids in place of phospholipids is a physiological response to low phosphorus (P) availability. This response has been shown in culture and in marine plankton studies, but examples from freshwater algae remain minimal. Herein, we analyzed the nutrient contents and lipid composition of periphyton communities across the Florida Everglades ecosystem. We hypothesized that in phosphate‐poor areas, periphyton in high‐ and low‐sulfate waters would vary the proportion of sulfolipids (SLs) and betaine lipids (BLs), respectively. In phosphate‐enriched areas, periphyton would produce more phospholipids (PLs). We observed that at low‐P sites, PLs were a minor lipid component. In cyanobacteria‐dominated periphyton where sulfate was abundant, BLs were only slightly more abundant than SLs. However, in the low‐P, low‐sulfate area, periphyton were comprised to a greater degree green algae and diatoms, and BLs represented the majority of the total lipids. Even in a P‐rich area, PLs were a small component of periphyton lipid profiles. Despite the phosphorus limitations of the Everglades, periphyton can develop tremendous biomass. Our results suggest a physiological response by periphyton to oligotrophic conditions whereby periphyton increase abundances of nonphosphorus lipids and have reduced proportions of PLs.  相似文献   

19.
While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral–algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.  相似文献   

20.
A field experiment was employed in Florida Bay investigating the response of seagrass epiphyte communities to nitrogen (N) and phosphorus (P) additions. While most of the variability in epiphyte community structure was related to uncontrolled temporal and spatial environmental heterogeneity, P additions increased the relative abundance of the red algae–cyanobacterial complex and green algae, with a concomitant decrease in diatoms. When N was added along with P, the observed changes to the diatoms and the red algae–cyanobacterial complex were in the same direction as P‐only treatments, but the responses were decreased in magnitude. Within the diatom community, species relative abundances, species richness, and diversity responded weakly to nutrient addition. P additions produced changes in diatom community structure that were limited to summer and were stronger in eastern Florida Bay than in the western bay. These changes were consistent with well‐established temporal and spatial patterns of P limitation. Despite the significant change in community structure resulting from P addition, diatom communities from the same site and time, regardless of nutrient treatment, remained more similar to one another than to the diatom communities subject to identical nutrient treatments from different sites and times. Overall, epiphyte communities exhibited responses to P addition that were most evident at the division level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号