首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational phosphorylation of phosvitin   总被引:3,自引:0,他引:3  
Schirm J  Gruber M  Ab G 《FEBS letters》1973,30(2):167-169
  相似文献   

2.
Post-translational phosphorylation of proteodermatan sulfate   总被引:2,自引:0,他引:2  
In cultured human skin fibroblasts, the core protein of the small proteodermatan sulfate becomes phosphorylated post-translationally but before the glycosaminoglycan chains are synthesized. This phosphorylation can occur when the intracellular transport is inhibited by carbonyl cyanide m-chlorophenylhydrazone or when the attachment of asparagine-linked oligosaccharides is prevented by tunicamycin. Serine and glycosaminoglycan chains were identified as phosphorylation sites of secreted proteodermatan sulfate. Upon alkaline borohydride treatment and degradation by chondroitin ABC lyase, the main phosphorylated product co-chromatographed with an unsulfated 3H-labeled hexasaccharide prepared analogously from [3H]galactose/[35S]sulfate-labeled proteodermatan sulfate.  相似文献   

3.
Soluble fragments of the alpha-chain of FcepsilonRI, the high-affinity receptor for IgE, compete with membrane-bound receptors for IgE and may thus provide a means to combat allergic responses. Mutagenesis within FcepsilonRIalpha is used in this study, in conjunction with the crystal structure of the FcepsilonRIalpha/IgE complex, to define the relative importance of specific residues within human FcepsilonRIalpha for IgE binding. We have also compared the effects of these mutants on binding to both human and mouse IgE, with a view to evaluating the mouse as an appropriate model for the analysis of future agents designed to mimic the human FcepsilonRIalpha and attenuate allergic disease. Three residues within the C-C' region of the FcepsilonRIalpha2 domain and two residues within the alpha2 proximal loops of the alpha1 domain were selected for mutagenesis and tested in binding assays with human and mouse IgE. All three alpha2 mutations (K117D, W130A, and Y131A) reduced the affinity of human IgE binding to different extents, but K117D had a far more pronounced effect on mouse IgE binding, and although Y131A had little effect, W130A modestly enhanced binding to mouse IgE. The mutations in alpha1 (R15A and F17A) diminished binding to both human and mouse IgE, with these effects most likely caused by disruption of the alpha1/alpha2 interface. Our results demonstrate that the effects of mutations in human FcepsilonRIalpha on mouse IgE binding, and hence the inhibitory properties of human receptor-based peptides assayed in rodent models of allergy, may not necessarily reflect their activity in a human IgE-based system.  相似文献   

4.
We have studied the importance of N-terminal processing for normal actin function using the Drosophila Act88F actin gene transcribed and translated in vitro. Despite having different charges as determined by two-dimensional (2D) gel electrophoresis, Act88F expressed in vivo and in vitro in rabbit reticulocyte lysate bind to DNase I with equal affinity and are able to copolymerise with bulk rabbit actin equally well. Using peptide mapping and thin-layer electrophoresis we have shown that bestatin [( 3-amino-2-hydroxy-4-phenyl-butanoyl]-L-leucine), an inhibitor of aminopeptidases, can inhibit actin N-terminal processing in rabbit reticulocyte lysate. Although processed and unprocessed actins translated in vitro are able to bind to DNase I equally well, unprocessed actins are less able to copolymerise with bulk actins. This effect is more pronounced when bulk rabbit actin is used but is still seen with bulk Lethocerus actin. Also, the unprocessed actins reduce the polymerisation of the processed actin translated in vitro with the bulk rabbit actin. This suggests that individual actins do interact, even in non-polymerising conditions. The reduced ability of unprocessed actin to polymerise shows that correct post-translational modification of the N terminus is required for normal actin function.  相似文献   

5.
6.
7.
SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.  相似文献   

8.
9.
The gene sequence encoding porcine preprogastrin is known; in order to clarify pathways of post-translational processing of the predicted precursor peptide we have characterized material reacting with antibodies to a synthetic peptide corresponding to the expected extreme COOH-terminal portion of the precursor. Radioimmunoassay was used to identify and monitor the purification of peptides in porcine antral mucosa. Two peptides (I and II) were isolated to homogeneity by steps involving gel filtration, ion exchange, and reversed-phase high performance liquid chromatography. The two co-eluted on gel filtration but were separated on anion-exchange chromatography. The more acidic peptide (II) was less hydrophobic on high performance liquid chromatography. Automated gas-phase microsequencing revealed the less acidic peptide (I) to have the sequence of porcine preprogastrin 96-104 (SAEEGDQRP); it would be produced by tryptic-like cleavage of Arg95-Ser96. The second peptide did not yield a phenylthiohydantoin-derivative on the first cycle but thereafter it sequenced as the first peptide (i.e. -AEEGDQRP). Incubation in alkali liberated almost equimolar amounts of phosphate from peptide II but not from I. In addition, alkaline phosphatase liberated phosphate and converted the acidic peptide to the less acidic one. The results suggest that serine in the first position is phosphorylated in peptide II but not I. The tripeptide -Ser(P)-Ala-Glu- also occurs in adrenocorticotropic hormone; this tripeptide is a substrate for physiological casein kinase. Potential phosphorylation sites occur at comparable positions in the precursors of a number of regulatory peptides.  相似文献   

10.
EFhd2 is a calcium binding protein, which is highly expressed in the central nervous system and associated with pathological forms of tau proteins in tauopathies. Previous phosphoproteomics studies and bioinformatics analysis suggest that EFhd2 may be phosphorylated. Here, we determine whether Cdk5, a hyperactivated kinase in tauopathies, phosphorylates EFhd2 and influence its known molecular activities. The results indicated that EFhd2 is phosphorylated by brain extract of the transgenic mouse CK-p25, which overexpresses the Cdk5 constitutive activator p25. Consistently, in vitro kinase assays demonstrated that Cdk5, but not GSK3β, directly phosphorylates EFhd2. Biomass, tandem mass spectrometry, and mutagenesis analyses indicated that Cdk5 monophosphorylates EFhd2 at S74, but not the adjacent S76. Furthermore, Cdk5-mediated phosphorylation of EFhd2 affected its calcium binding activity. Finally, a phospho-specific antibody was generated against EFhd2 phosphorylated at S74 and was used to detect this phosphorylation event in postmortem brain tissue from Alzheimer''s disease and normal-aging control cases. Results demonstrated that EFhd2 is phosphorylated in vivo at S74. These results imply that EFhd2''s physiological and/or pathological function could be regulated by its phosphorylation state.  相似文献   

11.
Two structurally distinct classes of peptides were recently identified by phage display that bind the high-affinity IgE receptor, FcepsilonRI, and block IgE binding and subsequent receptor activation. Both classes adopt highly stable structures in solution, one forming a beta hairpin, with the other forming a helical "zeta" structure. Despite these differences, the two classes bind competitively to the same site on the receptor. Structural analyses of both peptide-receptor complexes by NMR spectroscopy and/or X-ray crystallography reveal that the unrelated peptide scaffolds have nevertheless converged to present a similar three-dimensional surface to interact with FcepsilonRI and that their modes of interaction share a key feature of the IgE-FcepsilonRI complex, the proline/tryptophan sandwich.  相似文献   

12.
Activation of RhoA prevents NGF-induced outgrowth and causes retraction of neurites in neuronal cells, including PC12 cells. Despite its inhibitory effect on neurite outgrowth, NGF activates GTP loading of and effector binding to RhoA, setting up an apparent contradiction. According to the molecular switch hypothesis of GTPase function GTP-loading of RhoA should be sufficient to activate its effectors uniformly. However, when monitoring NGF-induced binding of GTP-RhoA to multiple targets, we noted differential interactions with its effectors. We found that NGF elicits a protein kinase A-mediated phosphorylation of RhoA on serine(188), which renders it unable to bind to Rho-associated kinase (ROK), whereas it retains the ability to interact with other RhoA targets including rhotekin, mDia-1 and PKN. We show in vitro and in vivo that phosphorylation of serine(188) represents an additional switch, capable of directing signals among effector pathways. In the context of PC12 cell differentiation, NGF-induced phosphorylation of RhoA on serine(188) prevents it from interacting with ROK, which would otherwise block neurite outgrowth. Transfection of RhoA(S188A) mutant into PC12 cells prevents NGF-induced neurite outgrowth, just like constitutively activated RhoA(14V) does, indicating the requirement of this phosphorylation site. Replacement of serine(188) with the phosphomimetic glutamate residue in RhoA(V14/S188E) selectively impairs interaction with ROK and when transfected into PC12 cells restores NGF-induced neurite outgrowth. Therefore, phosphorylation of serine(188) may serve as a novel secondary switch of RhoA capable of overriding GTP-binding-elicited effector activation to a subset of targets such as ROK, which interact with the C-terminus of RhoA.  相似文献   

13.
Hazra S  Szewczak A  Ort S  Konrad M  Lavie A 《Biochemistry》2011,50(14):2870-2880
Deoxycytidine kinase (dCK) uses either ATP or UTP as a phosphoryl donor to catalyze the phosphorylation of nucleoside acceptors. The kinetic properties of human dCK are modulated in vivo by phosphorylation of serine 74. This residue is a part of the insert region and is distant from the active site. Replacing the serine with a glutamic acid (S74E variant) can mimic phosphorylation of Ser74. To understand how phosphorylation affects the catalytic properties of dCK, we examined the S74E variant of dCK both structurally and kinetically. We observe that the presence of a glutamic acid at position 74 favors the adoption by the enzyme of the open conformation. Glu74 stabilizes the open conformation by directly interacting with the indole side chain of Trp58, a residue that is in the proximity of the base of the nucleoside substrate. The open dCK conformation is competent for the binding of nucleoside but not for phosphoryl transfer. In contrast, the closed conformation is competent for phosphoryl transfer but not for product release. Thus, dCK must make the transition between the open and closed states during the catalytic cycle. We propose a reaction scheme for dCK that incorporates the transition between the open and closed states, and this serves to rationalize the observed kinetic differences between wild-type dCK and the S74E variant.  相似文献   

14.
15.
The post-translational processing of the epidermal growth factor receptor in human A431 epidermoid carcinoma cells has been investigated. By employing the affinity matrix epidermal growth factor Affi-Gel in conjunction with immunoprecipitation, it has been demonstrated that core oligosaccharide addition is essential for the acquisition of epidermal growth factor-binding activity. Furthermore, the initial 160-kDa translation product was observed to undergo a processing step by which ligand-binding activity was acquired with a half-time of approximately 30 min while exhibiting no apparent change in mobility on sodium dodecyl sulfate-polyacrylamide gels. This was shown not to involve the conversion of high-mannose chains to complex chains which have been capped with fucose and sialic acid. Possible explanations for this activation in terms of translocation of intermediates and/or formation of disulfide bonds are discussed.  相似文献   

16.
To identify new effectors of IgE receptor (FcepsilonRI) signaling, we purified proteins from FcepsilonRI-stimulated RBL-2H3 rat mast cells on anti-phosphotyrosine beads and generated mouse monoclonal antibodies (mAb) against these proteins. Two mAbs bound to a protein that was identified as a new isoform of phospholipid scramblase (PLSCR) after screening an RBL-2H3 cDNA expression library. This isoform differed from PLSCR1 by the absence of an exon 3-encoded sequence and by an insert coding six QGPY(P/A)GP repeats. The PLSCR family of proteins is responsible for a redistribution of phospholipids across the plasma membrane. Although rat PLSCR is a 37-kDa protein, anti-phosphotyrosine immunoblots revealed the presence of 37-49 kDa phosphoproteins in the material immunoprecipitated with either anti-PLSCR mAb but not with unrelated monoclonal or polyclonal antibodies. Depletion of PLSCR resulted in the absence of these phosphoproteins. Additional experiments led to the identification of these phosphoproteins as phospho-PLSCR itself. Stimulation of RBL-2H3 cells upon FcepsilonRI engagement resulted in a dramatic increase in PLSCR tyrosine phosphorylation. A comparison of the relative amounts of phospho-PLSCR and nonphosphorylated PLSCR demonstrated that only a tiny fraction was thus modified, indicating a finely targeted involvement of PLSCR in FcepsilonRI signaling. Thus, this study reports the cloning of a new isoform of PLSCR, as well as the first observation that a member of the PLSCR family is a target for tyrosine kinases and is involved in signaling by an immune receptor. These findings open new perspectives on the role of phospholipid scramblases and to the mechanisms involved in their regulation.  相似文献   

17.
Monoclonal antibodies that inhibit IgE binding   总被引:12,自引:0,他引:12  
Four monoclonal antibodies were produced that inhibit IgE binding to the high affinity IgE receptor (Fc epsilon R) on rat basophilic leukemia cells. The four monoclonal antibodies (mAb) fall into two groups. The first group was comprised of 3 antibodies (mAb BC4, mAb CD3, and mAb CA5) that reacted with the Fc epsilon R at epitopes close or identical to the IgE-binding site. With 125I-labeled antibodies there was reciprocal cross-inhibition between the antibodies and IgE. The antibodies activated both RBL-2H3 cells and normal rat mast cells for histamine release. The 3 antibodies immunoprecipitated the previously described alpha, beta, and gamma components of the receptor. The number of radiolabeled Fab fragments of 2 of these antibodies bound per cell was similar or equal to the number of IgE receptors. In contrast, the mAb BC4 Fab bound to 2.1 +/- 0.4 times the number of IgE receptor sites. Therefore, the portion of the Fc epsilon R exposed on the cell surface must have two identical epitopes and an axis of symmetry. These 3 monoclonal antibodies recognize different but closely related epitopes in the IgE-binding region of the Fc epsilon R. The fourth monoclonal antibody (mAb AA4) had different characteristics. In cross-inhibition studies, IgE and the other 3 monoclonals did not inhibit the binding of this 125I-labeled monoclonal antibody. The number of molecules of this antibody bound per cell was approximately 14-fold greater than the Fc epsilon R number. This monoclonal antibody caused the inhibition of histamine release and it appears to bind to several cell components.  相似文献   

18.
Cardiac myosin binding protein-C (cMyBP-C) is a fundamental component of the cardiac sarcomere involved in regulating systolic and diastolic activity, processes which must be tightly maintained to preserve cardiac function. Importantly, as a non-enzymatic protein, cMyBP-C relies solely on post-translational modifications and protein-protein interactions in order to modulate its function, and does so through phosphorylation, glutathionylation and acetylation amongst others. Although some are better understood than others, these modifications may represent novel therapeutic routes to modulate cMyBP-C function in the treatment of cardiac disease.  相似文献   

19.
The circadian clock controls the period, phasing, and amplitude of processes that oscillate with a near 24-h rhythm. One core group of clock components in Arabidopsis that controls the pace of the central oscillator is comprised of five PRR (pseudo-response regulator) proteins whose biochemical function in the clock remains unclear. Peak expression of TOC1 (timing of cab expression 1)/PRR1, PRR3, PRR5, PRR7, and PRR9 are each phased differently over the course of the day and loss of any PRR protein alters period. Here we show that, together with TOC1, PRR5 is the only other likely proteolytic substrate of the E3 ubiquitin ligase SCF(ZTL) within this PRR family. We further demonstrate a functional significance for the phosphorylated forms of PRR5, TOC1, and PRR3. Each PRR protein examined is nuclear-localized and is differentially phosphorylated over the circadian cycle. The more highly phosphorylated forms of PRR5 and TOC1 interact best with the F-box protein ZTL (ZEITLUPE), suggesting a mechanism to modulate their proteolysis. In vivo degradation of both PRR5 and ZTL is inhibited by blue light, likely the result of blue light photoperception by ZTL. TOC1 and PRR3 interact in vivo and phosphorylation of both is necessary for their optimal binding in vitro. Additionally, because PRR3 and ZTL both interact with TOC1 in vivo via the TOC1 N terminus, taken together these data suggest that the TOC1/PRR3 phosphorylation-dependent interaction may protect TOC1 from ZTL-mediated degradation, resulting in an enhanced amplitude of TOC1 cycling.  相似文献   

20.
It is important for the understanding of protein kinase action to differentiate between regulation at the enzyme and at the substrate levels. For example, the inhibitors dinitrophenol-tyrosine and tyrphostins act at the enzyme level to inhibit phosphorylation of all substrates by c-Src and v-Src kinases. In contrast, polylysine acts at the substrate level to stimulate Src-mediated phosphorylation of beta-casein but to inhibit phosphorylation of alpha-casein. Here we demonstrate novel enzyme-specific and substrate-specific modulations of Src kinase activity of potential physiological significance. At the enzyme level, we observed that c-Src kinase preferentially phosphorylates alpha-casein, while the v-Src kinase prefers beta-casein. At the substrate level we observed substrate-specific modulation by physiological factors including sphingosine, sphingosine derivatives and the ganglioside GM3. Galactosyl-sphingosine (psychosine) was more effective in stimulating phosphorylation of beta-casein and poly(E1A1Y1) than sphingosine. Glucosyl- and lactosyl-sphingosine were ineffective. Rat was extensively phosphorylated by c-Src in the presence of polylysine, and to a lesser extent in the sphingosine and galactosyl-sphingosine. These unexpected differences point out another potential mechanism for regulation of c-Src and v-Src kinase activities and may help to explain some of the pleotyptic manifestations of protein tyrosine kinase actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号