首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A loss of certain heterochromatic regions (ABO loci) of various chromosomes dramatically distorts the early embryo development in the progeny of females mutant for the abnormal oocyte (abo) gene, which is located in euchromatin of chromosome 2. One ABO locus (X-ABO) is in X-chromosomal heterochromatin distal of the nucleolus organizer. A cluster of the Stellate repeats is located in the same heterochromatin block. Deletions of various fragments from distal heterochromatin were tested for the effect on expression of the abo mutation. The X-ABO locus was assigned to X-chromosomal heterochromatin segment h26 and shown to include repeats consisting mostly of mobile elements and defective Stellate copies. A major part of the regular Stellate tandem repeats proved to be distal of the X-ABO locus.  相似文献   

2.
3.
An autosomal euchromatic maternal-effect mutant, abo (= abnormal oocyte), interacts with, or regulates the activity of, the heterochromatin of the sex chromosomes of Drosophila melanogaster. It is shown that this interaction or regulation with the X chromosome involves a specific heterochromatic locus or small region that maps to the distal penultimate one-eighth of the basal X-chromosome heterochromatic segment.  相似文献   

4.
The crystal–Stellate system is one of the most known example of interaction between heterochromatin and euchromatin: a heterochromatic locus on the Y chromosome (crystal) 'represses a euchromatic locus (Stellate) on the X chromosome in Drosophila melanogaster. The molecular mechanism regulating this interaction is not completely understood. It is becoming clear that an RNA interference (RNAi) mechanism could be responsible for the silencing carried out by crystal on the Stellate sequences. Here, a detailed structural analysis of all the sequences involved in the system is reported, demonstrating a their 'puzzling structure. In addition three autosomal mutations: sting, scratch and sirio are described that interfere with the system. All of them are male sterile mutations and exhibit crystals made by the STELLATE protein in their primary spermatocytes. They are requested during oogenesis and early in embryogenesis as well. Hypothesis on the involvement of these genes in activating the Stellate sequences are discussed.  相似文献   

5.
Cloned Stellate heterochromatic repeats caused unstable mosaic inactivation (position effect variegation; PEV) of the reporter genemini-white. A number of known protein modifiers of the classical position effect induced by large heterochromatin blocks do not affect the expression of mini-white. This raises the question as to the specificity of chromatin compaction around the reporter gene. The inactivation of themini-white gene has been found to be accompanied by a decrease in its methylation catalyzed by Escherichia coli dam-methyltransferase expressed in the genome of Drosophila. However, no changes in the nucleosome organization of mini-whitehave been found.  相似文献   

6.
A novel retrotransposon, aurora, containing 324 by long terminal repeats (LTRs) was detected in Drosophila melanogaster as a 5 kb insertion in the heterochromatic Stellate gene. This insertion causes a 5 bp duplication of the integration site. Southern analysis and in situ hybridization data show that all detectable copies of aurora are immobilized in the D. melanogaster heterochromatin. However, mobile copies of aurora were revealed in the cuchromatin of D. simulans. The element was also found in various species of the melanogaster subgroup and in the D. virilis genome.The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers X70361 and X70362  相似文献   

7.
The 60 kb repeats located in the distal heterochromatin of the X chromosome of Drosophila melanogaster were cloned in overlapping cosmids. These regions, designated as SCLRs, comprised the following types of repeated elements Stellate genes, which are known to be involved in spermatogenesis; copia-like retrotransposons; LINE elements, including amplified Type rDNA insertions; and rDNA fragments. The following steps in SCLR formation were hypothesized: insertion of mobile elements into the rDNA and Stellate gene clusters: internal tandem duplication events; recombination between the rDNA cluster and Stellate tandem repeat; and amplification of the whole SCLR structure. There are about nine SCLR copies per haploid genome, but there is approximately a twofold variation in copy number between fly stocks. The SCLR copy number differences between closely related stocks are suggested to be the result of unequal sister chromatid exchange (USCE). The restricted variation in SCLR copy number between unrelated stocks and the absence of chromosomes free of SCLRs suggests that natural selection is active in copy number maintenance.  相似文献   

8.
Summary Females of Drosophila melanogaster, homozygous for the abnormal oocyte mutation (abo 2; 44) produce eggs with a greatly reduced probability of developing into adults compared with those of control females. After several generations in abo homozygous stocks, the abo maternal effect is no longer observed. The progressive amelioration of the abo maternal effect in the Canton S background, into which the abo mutation was introduced, was concomitant with an increase in rDNA and variation in the rDNA restriction pattern. To clarify the relationship between the loss of the abo phenotype and the change in rDNA redundancy, we performed genetic and molecular analyses using abo stocks carrying X chromosomes of different origin and carrying different amounts of rDNA. The results we present confirm, in different genetic backgrounds, the previous observations on the behaviour of the abo mutation. However, both the amount and the restriction pattern of rDNA of the different X chromosomes studied remain unchanged after the loss of the abo phenotype. From these observations, it appears that changes in heterochromatic regions other than rDNA are responsible for the loss of the abo maternal effect.  相似文献   

9.
A novel retrotransposon, aurora, containing 324 by long terminal repeats (LTRs) was detected in Drosophila melanogaster as a 5 kb insertion in the heterochromatic Stellate gene. This insertion causes a 5 bp duplication of the integration site. Southern analysis and in situ hybridization data show that all detectable copies of aurora are immobilized in the D. melanogaster heterochromatin. However, mobile copies of aurora were revealed in the cuchromatin of D. simulans. The element was also found in various species of the melanogaster subgroup and in the D. virilis genome.  相似文献   

10.
Y. Y. Shevelyov 《Genetics》1992,132(4):1033-1037
Two variants of X chromosome Stellate genes responsible for crystal formation in XO male primary spermatocytes occupy different genome positions. The majority if not all of the 1250-bp Stellate genes are located at the 12E site where the Ste locus has been mapped and almost all of the 1150-bp Stellate repeats are concentrated in the distal X heterochromatin. Sequencing of Stellate genes derived from X heterochromatin reveals the preservation of their open reading frames and precise matching with some Stellate cDNAs reported earlier. At least some heterochromatic Stellate genes are suggested to be expressed and, therefore, involved in the interaction with the Y chromosome locus Su(Ste), as are the Stellate genes from 12E.  相似文献   

11.
The authors have studied the interaction between the abnormal oocyte mutation and an inversion of the X chromosome, In( 1)sc4, which has a proximal breakpoint in or near the heterochromatic region (ABO) that maternally interacts with the abo product. It has been demonstrated that the presence of X chromosomes carrying this inversion, besides a marked increase in the severity of the maternal effect of the abo mutation, produces a zygotic effect resulting in the lethality of the progeny of stocks homozygous for abo and sc4. These results indicate that the sc4 inversion carries an abnormal region indispensable for the development of abo zygotes from sc4;abo mothers.  相似文献   

12.
Seven out of twenty 30–50 kb genome fragments with an MDG1 copia-like element cloned in cosmids were found to carry homologous sequences which belong to a new family of non-mobile heterochromatic moderate repeats (the HMR family). These repeats along with the MDG1 copies inserted in them are under-replicated in polytene chromosomes. Such repeats may also be located in the intercalary heterochromatin site 12E of the X chromosome. Chromosomal heterochromatic regions are enriched with one of the two main genomic variants of MDG1, MDG1het, identifiable by EcoRI restriction. From Southern DNA blot analysis the number of MDG1het copies and their sites within the heterochromatin are invariant in all the stocks examined, while there is not a single MDG1 site along the polytene chromosomes shared by all the stocks in question.  相似文献   

13.
14.
Chromosomes and phenotypes of four different sex-linkedwhite-mottled mutants of the position-effect variogation type were studied. Three mutants (w m1,w m2,w m3) are X-chromosomal rearrangements which shift the w+ locus into a position close to heterochromatin, but which have different ouchromatic and heterochromatic breaks. The fourth, a spontaneous derivative ofw m1, is an insertional duplication of part of the X chromosome, including thew + andN +loci. The duplicated segment is inserted into the distal part of the long arm of the heterochromatic Y chromosome. It is designated,w m CoY, orXw m Co when transferred to the X chromosome.Three chromosomal types (w m1,w m CoY) and (Xw m Co) having the same cuchromatic break near thew + locus, cause large-spotted eyes whereas two others (w m2,w m3) produce a popper-and-salt type of mottling. From the position of the various eu- and heterochromatic breaks, it appears that the distance of thew + locus to the point of reunion with heterochromatin, rather than the amount or type of adjoining heterochromatin, dietates the phenotypic action of the displacedw + locus, in the sense of a spreading effect on two proposed functional subunits within thew + locus.The pigmentation background against which the mottling effect is produced, i.e., a givenw-allele with its characteristic colour, or other eye colour mutations, does not seem to affect the type of mottling. Drosopterins and ommochromes react in the same way to modifing factors like temperature and supernumerary Y chromosomes. Two mutants (w m2 andw m CoY) while reacting in the same manner to Y chromosomes showed an opposite temperature response.By exchange between the heterochromatin of the Y and X chromosome inw/w m CoY males thew m Co duplication was transferred between the sex chromosomes with a certain regularity. It is not yet known wether the exchanges are mitotic or meiotic in origin but their heterochromatic nature has been demonstrated cytologically.  相似文献   

15.
Summary It has been suggested that DNA bending could play a role in the regulation of gene expression, chromosome segregation, specific recombination and/or DNA packaging. We have previously demonstrated that an Alul DNA family of repeats is the major component of constitutive heterochromatin in the brine shrimp A. franciscana. By the analysis of cloned oligomeric (monomer to hexamer) heterochromatic fragments we verified that the repetitive AluI DNA shows a stable curvature that determines a solenoidal geometry to the double helix. This particular structure could be of relevant importance in conferring the characteristic heterochromatic condensation. In this paper we evaluate how the point mutations that occurred during the evolution of the Alul sequence of A. franciscana could influence the sequence-dependent tridimensional conformation. The obtained data underline that, in spite of the high sequence mutation frequency (10%) of the repetitive DNA, the general structure of the heterochromatic DNA is not greatly influenced, but rather there is a substantial variation of the copy number of the repetitive AluI fragment. This variation could be responsible for the hypothetical function of the constitutive heterochromatin.Offprint requests to: N. Landsberger  相似文献   

16.
In the T(1;2)dor var7 multibreak rearrangement the distal 1A-2B segment of the X chromosome of Drosophila melanogaster is juxtaposed to an inverted portion of the heterochromatin of chromosome 2. Analysis of mitotic chromosomes by a series of banding techniques has permitted us precisely to locate the heterochromatic breakpoint of this translocation in the h42 region of 2R. Cloning and sequencing of the eu-heterochromatic junction revealed that the translocated 1A-2B fragment is joined to (AACAC)n repeats, which represent a previously undescribed satellite DNA in D. melanogaster. These repeated sequences have been estimated to account for about 1 Mb of the D. melanogaster genome. The repeats are located mainly in the Y chromosome and in the heterochromatin of the right arm of chromosome 2 (2Rh), where they are colocalized with the Stalker retrotransposon. Received: 3 October 1998 / Accepted: 3 December 1998  相似文献   

17.
A role for the RNA interference (RNAi) pathway in the establishment of heterochromatin is now well accepted for various organisms. Less is known about its relevance and precise role in mammalian cells. We previously showed that tandem insertion of a 1,000-copy inducible transgene into the genome of baby hamster kidney (BHK) cells initiated the formation of an extremely condensed chromatin locus. Here, we characterized the inactive transgenic locus as heterochromatin, since it was associated with heterochromatin protein 1 (HP1), histone H3 trimethylated at lysine 9, and cytosine methylation in CpG dinucleotides. Northern blot analysis did not detect any transgene-derived small RNAs. RNAi-mediated Dicer knockdown did not disrupt the heterochromatic transgenic locus or up-regulate transgene expression. Moreover, neither Dicer knockdown nor overexpression of transgene-directed small interfering RNAs altered the bidirectional transition of the transgenic locus between the heterochromatic and euchromatic states. Interestingly, tethering of HP1 to the transgenic locus effectively induced transgene silencing and chromatin condensation in a Dicer-independent manner, suggesting a role for HP1 in maintaining the heterochromatic locus. Our results suggest that the RNAi pathway is not required for the assembly and maintenance of noncentromeric heterochromatin initiated by tandem transgene repeats in mammalian cells.  相似文献   

18.
Hybrid females from crosses between Drsophila melanogaster males and females of its sibling species, D. simulans, D. mauritiana, or D. sechellia die as embryos. This lethality is believed to be caused by incompatibility between the X chromosome of D. melanogaster and the maternal cytoplasm. Zygotic hybrid rescue (Zhr) prevents this embryonic lethality and has been cytogenetically mapped to a proximal region of the X chromosome of D. melanogaster, probably in the centromeric heterochromatin. We have carried out high resolution cytological mapping of Zhr using deficiencies and duplications of the X heterochromatin. Deletions of the Zhr + gene from the hybrid genome exhibit the Zhr phenotype. On the contrary, addition of the wild-type gene to the hybrid genome causes embryonic lethality, regardless of sex. The Zhr locus has been narrowed down to the region covered by Dp(1;f)1162 but not covered Dp(1;f)1205, a chromosome carrying a duplication of heterochromatin located slightly distal to the In(1)sc 8 heterochromatic breakpoint.  相似文献   

19.
In Drosophila melanogaster X chromosome heterochromatin (Xh) constitutes the proximal 40% of the X chromosome DNA and contains a number of genetic elements with homologous sites on the Y chromosome, one of which is well defined, namely, the bobbed locus, the repetitive structural locus for the 18S and 28S rRNAs. This report presents the localisation of specific repeated DNA sequences within Xh and the employment of this sequence map in constructing new chromosomes to analyse the nature of the heterochromatin surrounding the rDNA region. Repeated sequences were located relative to inversion breakpoints which differentiate Xh cytogenetically. When the rDNA region was manipulated to be in a position in the chromosome so that it was without the Xh which normally surrounds it, the following obser-vations were made, (i) The rDNA region of Xh is intrinsically hetero-chromatic, remaining genetically active and yet possessing major heterochromatic properties even in the absence of the flanking heterochromatin regions, (ii) The size of the deletion removing the portion of Xh normally located distal to the rDNA region affected the dominance relationship between the X and Y nucleolar organizers (activity/endoreduplication assayed in male salivary glands). The X rDNA without any flanking heterochromatin was dominant over Y rDNA while the presence of some Xh allowed both the X and Y rDNA to be utilized, (iii) Enhancement of the position effect variegation on the white locus was demonstrated to occur as a result of the Xh deletions generated. EMS mutagenesis studies argue that the regions of Xh flanking the rDNA region contain no vital loci despite the fact that they strongly effect gene expression in some genotypes. This is consistent with early studies using X-ray mutagenesis (Lindsley et al., 1960). The pleiotropic effects of deleting specific regions of Xh is discussed in relation to the possible influence of heterochromatin on the organisation of the functional interphase nucleus.  相似文献   

20.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号