首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract Growth of Pyrococcus furiosus was studied in batch cultures with cellobiose, maltose and pyruvate as limiting substrates. Fermentation mass balances of all conversions were complete. These data suggested that the pathway for conversion of the disaccharides is essentially the same. The molar growth yields on maltose and cellobiose were about equal (±50 g cell dry weight (cdw) per mol disaccharide). The molar growth yield on pyruvate was ±6.3 g cdw mol−1. Growth yields were influenced by the hydrogen partial pressure. When P. furiosus was co-cultured with a methanogen a yield of 56 g cdw mol−1 disaccharide and 8.6 g cdw mol−1 pyruvate was obtained. When the data were interpreted according to the proposed pyroglycolytic pathway, the calculated YATP values were different for the various pH2 conditions, suggesting that an additional energy conserving site may be present in the pathway.  相似文献   

2.
K Ma  M W Adams 《Journal of bacteriology》1994,176(21):6509-6517
Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 100 degrees C by the fermentation of carbohydrates yielding acetate, CO2, and H2 as the primary products. If elemental sulfur (S0) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction of polysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of 52,000 and 29,000 Da. SuDH contains flavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 95 degrees C of about 12 h and shows a 50% increase in activity after 12 h at 82 degrees C. The pure enzyme has a specific activity of 7 mumol of H2S produced.min-1.mg of protein-1 at 80 degrees C with polysulfide (1.2 mM) and NADPH (0.4 mM) as substrates. The apparent Km values were 1.25 mM and 11 microM, respectively. NADH was not utilized as an electron donor for polysulfide reduction. P. furiosus rubredoxin (K(m) = 1.6 microM) also functioned as an electron acceptor for SuDH, and SuDH catalyzed the reduction of NADP with reduced P. furiosus ferredoxin (K(m) = 0.7 microM) as an electron donor. The multiple activities of SuDH and its proposed role in the metabolism of S(o) and polysulfide are discussed.  相似文献   

3.
Roy R  Adams MW 《Journal of bacteriology》2002,184(24):6952-6956
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.  相似文献   

4.
Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.  相似文献   

5.
6.
The effect of bicarbonate on the growth and product formation by a periodontopathic bacterium, Actinobacillus actinomycetemcomitans, was examined in an anaerobic chemostat culture with fructose as the limiting nutrient. The chemostat cultures were run at dilution rates between 0.04 and 0.25 h-1 and the maximum growth yield (Ymax fructose) was estimated to be 40.3 and 61.7 g dry wt (mol fructose)-1 in the absence and presence of bicarbonate, respectively. The major fermentation products in the absence of bicarbonate were formate, acetate, ethanol and succinate, with small amounts of lactate. The addition of bicarbonate to the medium resulted in a marked decrease in ethanol production and in a significant increase in succinate production. Washed cells possessed activity for the cleavage of formate to CO2 and H2, which seemed to play a role in supplying CO2 for the synthesis of succinate in the absence of bicarbonate. The study of enzyme activities in cell-free extracts suggested that fructose was fermented by the Embden-Meyerhof-Parnas pathway. The values of Ymax ATP and the efficiency of ATP generation (ATP-Eff) during fructose catabolism were estimated and higher values were obtained for the culture in the presence of bicarbonate: 20.2 g dry wt (mol ATP)-1 and 3.0 mol ATP (mol fructose)-1, respectively, versus Ymax ATP = 15.1 and ATP-Eff = 2.7 in the absence of bicarbonate.  相似文献   

7.
A mutant of Methanosarcina barkeri (Fusaro) is able to grow on pyruvate as the sole carbon and energy source. During growth, pyruvate is converted to CH4 and CO2, and about 1.5 mol of ATP per mol of CH4 is formed (A.-K. Bock, A. Prieger-Kraft, and P. Schönheit, Arch. Microbiol. 161:33-46, 1994). The pyruvate-utilizing mutant of M. barkeri could also grow on pyruvate when methanogenesis was completely inhibited by bromoethanesulfonate (BES). The mutant grew on pyruvate (80 mM) in the presence of 2 mM BES with a doubling time of about 30 h up to cell densities of about 400 mg (dry weight) of cells per liter. During growth on pyruvate, the major fermentation products were acetate and CO2 (about 0.9 mol each per mol of pyruvate). Small amounts of acetoin, acetolactate, alanine, leucine, isoleucine, and valine were also detected. CH4 was not formed. The molar growth yield (Yacetate) was about 9 g of cells (dry weight) per mol of acetate, indicating an ATP yield of about 1 mol/mol of acetate formed. Growth on pyruvate in the presence of BES was limited; after six to eight generations, the doubling times increased and the final cell densities decreased. After 9 to 11 generations, growth stopped completely. In the presence of BES, suspensions of pyruvate-grown cells fermented pyruvate to acetate, CO2, and H2. CH4 was not formed. Conversion of pyruvate to acetate, in the complete absence of methanogenesis, was coupled to ATP synthesis. Dicyclohexylcarbodiimide, an inhibitor of H(+)-translocating ATP synthase, did not inhibit ATP formation. In the presence of dicyclohexylcarbodiimide, stoichiometries of up to 0.9 mol of ATP per mol of acetate were observed. The uncoupler arsenate completely inhibited ATP synthesis, while the rates of acetate, CO2, and H2 formation were stimulated up to fourfold. Cell extracts of M. barkeri grown on pyruvate under nonmethenogenic conditions contained pyruvate: ferredoxin oxidoreductase (0.5 U/mg), phosphate acetyltransferase (12 U/mg), and acetate kinase (12 U/mg). From these data it is concluded that ATP was synthesized by substrate level phosphorylation during growth of the M. barkeri mutant on pyruvate in the absence of methanogenesis. This is the first report of growth of a methanogen under nonmethanogenic conditions at the expense of a fermentative energy metabolism.  相似文献   

8.
The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.  相似文献   

9.
The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.  相似文献   

10.
Spirochaeta thermophila RI 19.B1 (DSM 6192) fermented glucose to lactate, acetate, CO2, and H2 with concomitant formation of cell material. The cell dry mass yield was 20.0 g/mol of glucose. From the fermentation balance data and knowledge of the fermentation pathway, a YATP of 9.22 g of dry mass per mol of ATP was calculated for pH-uncontrolled batch-culture growth on glucose in a mineral medium. Measurement of enzyme activities in glucose-grown cells revealed that glucose was taken up by a permease and then subjected to ATP-dependent phosphorylation by a hexokinase. Glucose-6-phosphate was further metabolized to pyruvate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase activity was PPi rather than ATP. This was also found for the type strain of S. thermophila, Z-1203 (DSM 6578). PPi was probably formed by pyrophosphoroclastic cleavage of ATP, with recovery of the resultant AMP by the activity of adenylate kinase. All other measured kinase activities utilized ATP as the phosphoryl donor. Pyruvate was further metabolized to acetyl coenzyme A with concomitant production of H2 and CO2 by pyruvate synthase. Lactate was also produced from pyruvate by a fructose-1,6-diphosphate-insensitive lactate dehydrogenase. Evidence was obtained for the transfer of reducing equivalents from the glycolytic pathway to hydrogenase to produce H2. No formate dehydrogenase or significant ethanol-producing enzyme activities were detected.  相似文献   

11.
M Muir  L Williams    T Ferenci 《Journal of bacteriology》1985,163(3):1237-1242
The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products.  相似文献   

12.
Propionate consumption was studied in syntrophic batch and chemostat cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. The Gibbs free energy available for the H(2)-consuming methanogens was <-20 kJ mol of CH(4)(-1) and thus allowed the synthesis of 1/3 mol of ATP per reaction. The Gibbs free energy available for the propionate oxidizer, on the other hand, was usually >-10 kJ mol of propionate(-1). Nevertheless, the syntrophic coculture grew in the chemostat at steady-state rates of 0.04 to 0. 07 day(-1) and produced maximum biomass yields of 2.6 g mol of propionate(-1) and 7.6 g mol of CH(4)(-1) for S. fumaroxidans and M. hungatei, respectively. The energy efficiency for syntrophic growth of S. fumaroxidans, i.e., the biomass produced per unit of available Gibbs free energy was comparable to a theoretical growth yield of 5 to 12 g mol of ATP(-1). However, a lower growth efficiency was observed when sulfate served as an additional electron acceptor, suggesting inefficient energy conservation in the presence of sulfate. The maintenance Gibbs free energy determined from the maintenance coefficient of syntrophically grown S. fumaroxidans was surprisingly low (0.14 kJ h(-1) mol of biomass C(-1)) compared to the theoretical value. On the other hand, the Gibbs free-energy dissipation per mole of biomass C produced was much higher than expected. We conclude that the small Gibbs free energy available in many methanogenic environments is sufficient for syntrophic propionate oxidizers to survive on a Gibbs free energy that is much lower than that theoretically predicted.  相似文献   

13.
The in vivo rate of sulfate activation in Penicillium chrysogenum (wild-type strain ATCC 24791) was determined to be 0.19 +/- 0.09 mumol g(-1) (dry weight) min(-1) by the following methods. (i) The maximum growth of the organism in synthetic medium was a linear function of the initial Na(2)SO(4) concentration between 0 and 8 x 10(-4) Na(2)SO(4). The growth yield was 1.64 x 10(-2) g (dry weight) of mycelium per mumol of added sulfate, corresponding to a minimum sulfur requirement of 61 mumol/g (dry weight). Under these conditions (limiting sulfate) the minimum doubling time of P. chrysogenum in submerged culture was about 3.8 h, corresponding to a maximum exponential growth rate constant of 3.0 x 10(-3) min(-1). If all the sulfur in this mycelium passed through adenosine-5'-phosphosulfate, the rate of sulfate activation in vivo must have been 0.183 mumol min(-1) g(-1) (dry weight). (ii) In the presence of excess (35)SO(4) (2-), the total organic (35)S produced varied with the mycelial growth rate. However, until the culture approached maximum density, the product of [(growth rate constant) x (organic (35)S content)] was nearly constant at 0.24 to 0.28 mumol min(-1) g(-1) (dry weight). (iii) A sulfur-starved mycelium pulsed with 10(-4) M (35)SO(4) (2-) produced organic (35)S at a rate of about 0.10 mumol min(-1) g(-1) (dry weight) under conditions where the internal concentrations of ATP and sulfate would permit ATP sulfurylase to operate at about 70% of its V(max). Cell-free extracts of P. chrysogenum growing rapidly on excess sulfate contained 0.22 U of ATP sulfurylase per g (dry weight). Thus, in spite of the relatively low specific activity of homogeneous ATP sulfurylase (0.13 U/mg of protein, corresponding to an active site turnover of 7.15 min(-1)), the mycelial content of the enzyme was sufficient to account for the observed growth rate of the organism on inorganic sulfate as the sole sulfur source.  相似文献   

14.
Batch and continuous cultures were used to compare specific physiological features of the hyperthermophilic archaeon, Thermococcus litoralis (T(opt) of 85 degrees to 88 degrees C), to another fermentative hyperthermophile that reduces S degrees facultatively, that is, the bacterium Thermotoga maritima (T(opt) of 80 degrees to 85 degrees C). Under nutritionally optimal conditions, these two hyperthermophiles had similar growth yields on maltose and similar cell formula weights based on elemental analysis: CH(1.7)O(0. 7)N(0.2)S(0.006) for T. litoralis and CH(1.6)O(0.6)N(0.2)S(0.005) for T. maritima. However, they differed with respect to nitrogen source, fermentation product patterns, and propensity to form exopolysaccharides (EPS). T. litoralis could be cultured in the absence or presence of maltose on an amino acid-containing defined medium in which amino acids served as the sole nitrogen source. T. maritima, on the other hand, did not utilize amino acids as carbon, energy, or nitrogen sources, and could be grown in a similar defined medium only when supplemented with maltose and ammonium chloride. Not only was T. litoralis unable to utilize NH(4)Cl as a nitrogen source, its growth was inhibited at certain levels. At 1 g/L ( approximately 20 mM) NH(4)Cl, the maximum growth yield (Y(x/s(max))) for T. litoralis was reduced to 13 g cells dry weight (CDW)/mol glucose from 40 g CDW/mol glucose in media lacking NH(4)Cl. Alanine production increased with increasing NH(4)Cl concentrations and was most pronounced if growth on NH(4)Cl was carried out in an 80% H(2) atmosphere. In T. maritima cultures, which would not grow in an 80% H(2) atmosphere, alanine and EPS were produced at much lower levels, which did not change with NH(4)Cl concentration. EPS production rose sharply at high dilution rates for both organisms, such that maltose utilization plots were biphasic. Wall growth effects were also noted, because cultures failed to wash out at dilution rates significantly above maximum growth rates determined from batch growth experiments. This study illustrates the importance of effective cultivation methods for addressing physiological issues related to the growth of hyperthermophilic heterotrophs.  相似文献   

15.
16.
Wolinella succinogenes was found to grow on H2S plus fumarate with the formation of elemental sulfur and succinate. The growth rate was 0.18 h-1 (t d=3.8 h) and the growth yield was estimated to be 6.0 g per mol fumarate used. Growth also occurred on formate plus elemental sulfur; the products formed were H2S and CO2. The growth rate and estimated growth yield were 0.58 h-1 (t d=1.2 h) and 3.5 g per mol formate used, respectively. These results suggest that certain chemotrophic anaerobes may be involved in both the formation and reduction of sulfur.  相似文献   

17.
The hyperthermophilic archaeon Pyrococcus furiosus was cultivated in batch and continuous fermentations on different carbon substrates. The cultivation of P furiosus on soluble starch as the only carbon source resulted in cell densities three times higher than in cultivations on maltose, 1.06 x 10(10) cells/ml compared to 3.4 x 10(9) cells/ml. The yield coefficient, Y(x/y) = 0.12 g/g, and the growth rate, mu = 0.33 h(-1), were almost equal on soluble starch and on maltose, but on glucose no growth could be detected. An inhibitory effect of glucose, when added to other carbon substrates, also could not be found. Isobutyric and isovaleric acid were detected as novel metabolites produced by P. furiosus. Inhibitory effects of these acids, as well as of the well-known products acetic acid, propionic acid, and alanine, could be precluded. Concentrations of 10% CO2 in the gas supply respective to the exhaust gas enhanced the growth of P furiosus significantly. The maximum cell number was two orders of magnitude higher than was observed with pure nitrogen. Further increase of the CO2 concentration up to 100% had no significant effect on the growth of P. furiosus.  相似文献   

18.
Growth yields were determined with Acetobacterium woodii strain NZva 16 on hydrogen and CO2, formate, methanol, vanillate, ferulate and fructose in mineral medium in the absence and presence of 0.05% yeast extract. Yeast extract was not essential for growth but enhanced growth yields by 25–100% depending on the substrate fermented. Comparison of yields on formate or methanol allowed calculation of an energy yield in the range of 1.5–2 mol ATP per mol acetate formed during homoacetate fermentation of A. woodii. In the presence of 6 mM caffeate, growth yields were determined with the substrates formate or methanol. Caffeate was reduced to hydrocaffeate and increased growth yields were obtained. An ATP yield of about 1 mol per mol of caffeate reduced was calculated. Cytochromes were not detectable in cell free extracts or membrane preparations.  相似文献   

19.
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum hungatei produced 3 mol of acetate and 0.75 mol of methane per mol of benzoate. The growth yield of the S. aciditrophicus pure culture was 6.9 g (dry weight) per mol of benzoate metabolized, whereas the growth yield of the S. aciditrophicus-M. hungatei coculture was 11.8 g (dry weight) per mol of benzoate. Cyclohexane carboxylate was metabolized by S. aciditrophicus only in a coculture with a hydrogen user and was not metabolized by S. aciditrophicus pure cultures. Cyclohex-1-ene carboxylate was incompletely degraded by S. aciditrophicus pure cultures until a free energy change (DeltaG') of -9.2 kJ/mol was reached (-4.7 kJ/mol for the hydrogen-producing reaction). Cyclohex-1-ene carboxylate, pimelate, and glutarate transiently accumulated at micromolar levels during growth of an S. aciditrophicus pure culture with benzoate. High hydrogen (10.1 kPa) and acetate (60 mM) levels inhibited benzoate metabolism by S. aciditrophicus pure cultures. These results suggest that benzoate fermentation by S. aciditrophicus in the absence of hydrogen users proceeds via a dismutation reaction in which the reducing equivalents produced during oxidation of one benzoate molecule to acetate and carbon dioxide are used to reduce another benzoate molecule to cyclohexane carboxylate, which is not metabolized further. Benzoate fermentation to acetate, CO(2), and cyclohexane carboxylate is thermodynamically favorable and can proceed at free energy values more positive than -20 kJ/mol, the postulated minimum free energy value for substrate metabolism.  相似文献   

20.
The taxonomic and metabolic characteristics of a new caldoactive bacterium, Thermobacteroides acetoethylicus, that is prevalent in volcanic features where organic matter is vigorously being decomposed is described. T. acetoethylicus is a nonsporing, obligately anaerobic rod that stains gram-negative and exists singly or in pairs. Electron micrographs revealed peritrichous flagellation and a distinctive outer wall envelope structure without an outer wall membrane layer. The temperature range for growth was >40°C and <80°C; the pH range was between 5.5 and 8.5. The DNA base composition was 31±1 mol% guanosine plus cytosine. Fermentable carbohydrates included glucose, mannose, cellobiose, lactose, maltose, sucrose and starch. Growth on glucose in complex medium was associated with a 30 min doubling time; and ethanol, acetate, H2/CO2, butyrate and isobutyrate accounted for a balanced fermentation. Lactic acid was not formed. Growth was inhibited by O2, 2% NaCl, penicillin, streptomycin, vankomycin and neomycin, but not by chloramphenicol or hydrogen (2 atm). Glucose was metabolized via the Embden-Meyerhoff Pathway. A molar growth yield of 18.3 g cell per mol glucose and an ATP yield of 8 g cell per mol ATP produced was obtained. These results support the absence of detectable cytochromes and suggest that energy conservation is via substrate level phosphorylation alone.Abbreviations DNA deoxyribonucleic acid - ATP adenosine triphosphate - LPBB low phosphate buffered basal - TYEG tryptone yeast extract glucose - O.D. optical density - Y ATP molar ATP yield - G+C guanosine plus cytosine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号