首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Acetate production during anaerobic sludge treatment has significant economic and environmental benefits. In this study, trophic links between syntrophic acetogens and homoacetogens in the anaerobic acidogenic fermentation of sewage sludge were investigated using methanogenic inhibitor 2-bromoethanesulfonate (BES) to block the methanogenesis pathway and butyrate to enhance syntrophic acetogenesis. The Gibbs free energies (ΔG) of the butyrate-degrading and homoacetogenic processes were close to the thermodynamic threshold of the reaction activity (−15 kJ/mol). In addition, microbial quantification analysis revealed that the growth of syntrophic acetogenic bacteria and homoacetogens in the treatment incubations was higher than that of the control. The results indicated that hydrogen-producing butyrate degraders are stimulated with homoacetogens when methanogenesis was specifically inhibited.  相似文献   

2.
Anaerobic granules degrading pentachlorophenol (PCP) with specific PCP removal activity up to 14.6 mg/g of volatile suspended solids per day were developed in a laboratory-scale anaerobic upflow sludge blanket reactor at 28 degrees C, by using a mixture of acetate, propionate, butyrate, and methanol as the carbon source. The reactor was able to treat synthetic wastewater containing 40 to 60 mg of PCP per liter at a volumetric loading rate of up to 90 mg/liter of reactor volume per day, with a hydraulic retention time of 10.8 to 15 h. PCP removal of more than 99% was achieved. Results of adsorption of PCP by granular biomass indicated that the PCP removal by the granules was due to biodegradation rather than adsorption. A radiotracer assay demonstrated that the PCP-degrading granules mineralized [14C]PCP to 14CH4 and 14CO2. Toxicity test results indicated that syntrophic propionate degraders and acetate-utilizing methanogens were more sensitive to PCP than syntrophic butyrate degraders. The PCP-degrading granules also exhibited a higher tolerance to the inhibition caused by PCP for methane production and degradation of acetate, propionate, and butyrate, compared with anaerobic granules unadapted to PCP.  相似文献   

3.
A study was conducted to determine the diversity of 2-, 3-, and 4-chlorobenzoate (CB) degraders in two pristine soils with similar physical and chemical characteristics. Surface soils were collected from forested sites and amended with 500 g of 2-, 3-, or 4-CB g–1 soil. The CB levels and degrader numbers were monitored throughout the study. Degraders were isolated, grouped by DNA fingerprints, identified via 16S rDNA sequences, and screened for plasmids. The CB genes in selected degraders were isolated and/or sequenced. In the Madera soil, 2-CB and 4-CB degraded within 11 and 42 d, respectively, but 3-CB did not degrade. In contrast, 3-CB and 4-CB degraded in the Oversite soil within 14 and 28 d, respectively, while 2-CB did not degrade. Approximately 107 CFU g–1 of degraders were detected in the Madera soil with 2-CB, and the Oversite soil with 3- and 4-CB. No degraders were detected in the Madera soil with 4-CB even though the 4-CB degraded. Nearly all of the 2-CB degraders isolated from the Madera soil were identified as a Burkholderia sp. containing chromosomally encoded degradative genes. In contrast, several different 3- and 4-CB degraders were isolated from the Oversite soil, and their populations changed as CB degradation progressed. Most of these 3-CB degraders were identified as Burkholderia spp. while the majority of 4-CB degraders were identified as Bradyrhizobium spp. Several of the 3-CB degraders contained the degradative genes on large plasmids, and there was variation between the plasmids in different isolates. When a fresh sample of Madera soil was amended with 50, 100, or 200 g 3-CB g–1, 3-CB degradation occurred, suggesting that 500 g 3-CB g–1 was toxic to the degraders. Also, different 3-CB degraders were isolated from the Madera soil at each of the three lower levels of 3-CB. No 2-CB degradation was detected in the Oversite soil even at lower 2-CB levels. These results indicate that the development of 2-, 3-, and 4-CB degrader populations is site-specific and that 2-, 3-, and 4-CB are degraded by different bacterial populations in pristine soils. These results also imply that the microbial ecology of two soils that develop under similar biotic and abiotic environments can be quite different.  相似文献   

4.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

5.
The effect of temperature on granulation and microbial interaction of anaerobic sludges grown in thermophilic upflow anaerobic sludge bed (UASB) reactors was investigated at two different temperatures, 55°C (Run 1) and 65°C (Run 2). Each run consisted of two phases. Phase 1 was conducted by feeding acetate for a period of 200 days. In Phase 2, both reactors were fed a mixture of acetate and sucrose for a further 100 days. During Phase 1, no granulation occurred in the sludge of either run. Microscopic observation revealed that the predominant methanogen was Methanothrix in Run 1, whereas Methanobacterium-like bacteria existed to a significant extent in Run 2. The acetate-utilizing methanogenic activity of both sludges increased with increasing test temperature in the range 55–65°C. Since the acetate-grown sludges exhibited far higher H2-utilizing methanogenic activity than acetate-utilizing methanogenic activity, it is suggested that a syntrophic association of acetate-oxidizing bacteria with hydrogenotrophic methanogens was responsible for a considerable portion of the overall acetate elimination in thermophilic anaerobic sludge. During Phase 2, granules coated with either filamentous bacteria or cocci-type bacteria (both presumably acid-forming bacteria) were successfully established in Run 1 and Run 2, respectively. Since the acetate-utilizing methanogenic activities of the granular sludges were four to five times higher than those of the acetate-grown sludges (Phase 1), the co-existence of these coating bacteria appeared to contribute to the enclosing of acetate consumers inside granules. Correspondence to: S. Uemura  相似文献   

6.
7.
Summary Granular sludge from an upflow anaerobic sludge blanket (UASB) reactor operated for 18 months on a mineral medium containing pentachlorophenol (PCP), phenol, and glucose was studied. Under methanogenic conditions PCP was dechlorinated to lower chlorinated phenols, primarily di-, and monochlorophenols. The initial dechlorination of PCP and the removal of the intermediate 3,5-dichlorophenol (3,5-DCP), seemed to be rate-limiting. Addition of sulphate was slightly inhibitory for PCP transformation in the presence of glucose but had little or no effect on dechlorination in vials without glucose Nitrate was strongly inhibitory. The consortium had a high affinity for PCP, with an apparent half-saturation constant (K s) value of 580 g/1. Addition of various easily degradable carbon compounds including acetate, butyrate, formate, hydrogen/carbon dioxide, ethanol, and glucose together with extra PCP, to cultures already dechlorinating PCP showed that only glucose had a stimulatory effect on the dechlorination rate. Counts of bacteria from a sample f disintegrated granular sludge showed that the number of dechlorinating organisms was low compared to the numbers of glucose degraders and methanogens. Correspondence to: B. K. Ahring  相似文献   

8.
M Chen 《Applied microbiology》1983,45(4):1271-1276
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

9.
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

10.
Journal of Industrial Microbiology & Biotechnology - Anaerobic gut fungi are biomass degraders that form syntrophic associations with other microbes in their native rumen environment. Here,...  相似文献   

11.
Chlorinated guaiacols (4,5,6-trichloro-, 4,5-dichloro-, and 4-chloro-guaiacol) at 0.2 mM were completely degraded by anaerobic digester sludge within 4 d, but complete removal of TeCG could not be attained. The removal rates of chlorinated guaiacols by adsorption and biodegradation were in the following order: 4,5-dichloroguaiacol > 4-chloroguaiacol = 4,5,6-trichloroguaiacol > tetrachloroguaiacol. The most rapid initial TeCG degradation occurred in the glucose-supplemented cultures. However, the degradation rate of 4,5,6-TriCG was not increased significantly by supplementary glucose.  相似文献   

12.
Sulfate reduction by a syntrophic propionate-oxidizing bacterium   总被引:3,自引:0,他引:3  
The syntrophic propionate-oxidizing bacterium MPOB was able to grow in the absence of methanogens by coupling the oxidation of propionate to the reduction of sulfate. Growth on propionate plus sulfate was very slow (=0.024 day–1). An average growth yield was found of 1.5 g (dry weight) per mol of propionate. MPOB grew even slower than other sulfate-reducing syntrophic propionate-oxidizing bacteria. The growth rates and yields of strict sulfate-reducing bacteria (Desulfobulbus sp.) grown on propionate plus sulfate are considerably higher.  相似文献   

13.
Anaerobic fermentative degradation of resorcinol and resorcylates was studied in enrichment cultures inoculated with marine or freshwater sediments or digested sludge. -Resorcylate (3,5-dihydroxybenzoate) was degraded very rapidly to acetate and methane by enrichment cultures inoculated with freshwater sediment or sewage sludge, but degradation was slow in enrichments from marine habitats. The freshwater cultures did not degrade any other related phenolic substrates. Inhibition of methanogenic bacteria by bromoethanesulfonate and acetylene led to enhanced acetate formation indicating homoacetogenic hydrogen oxidation. With resorcinol (1,3-dihydroxybenzene) and - and -resorcylate (2,4- and 2,6-dihydroxybenzoate), two different types of Gram-positive spore-forming strict anaerobes were isolated, which both did not grow with -resorcylate. Both were assigned to the genus Clostridium. From freshwater enrichments, six strains were isolated in defined coculture with Campylobacter sp. They fermented resorcinol and - and -resorcylate stoichiometrically to acetate and butyrate. No interspecies hydrogen transfer to methanogenic or other anaerobic bacteria was found. None out of numerous organic nutrients tested substituted for Campylobacter sp. as partner in defined cultures; the nutritive dependence of this bacterium could not be elucidated. Isolates from marine sediments formed acetate and hydrogen from resorcyclic compounds, and depended on syntrophic association with hydrogenscavenging anaerobes such as methanogens.  相似文献   

14.
Anaerobic oxidation of volatile fatty acids (VFAs) as the key intermediates is restricted thermodynamically. Presently, enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in an upflow anaerobic sludge bed reactor fed with acetic, propionic, and butyric acids at maximum concentrations of 5.0, 3.0, and 4.0 g/L, respectively. Interactive effects of propionate, butyrate and acetate were analyzed. Hydraulic retention time (HRT) and acetate oxidizing syntrophs and methanogen (hydrogenotrophs) to syntrophic bacteria (propionate- and butyrate-oxidizing bacteria) population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. M/A did not affect the size distribution and had little effect on extracellular polymer contents of the granules. Granular sludge with close spatial microbial proximity enhanced syntrophic degradation of VFAs compared to other cultures, such as suspended cultures. Optimum conditions were found to be propionate = 1.93 g/L, butyrate = 2.15 g/L, acetate = 2.50 g/L, HRT = 22 h, and M/A = 2.5 corresponding to maximum VFA removal and biogas production rate. Results of verification experiments and predicted values from fitted correlations were in close agreement at the 95% confidence interval. Granules seemed to be smaller particles and less stable in construction with an irregular fractured surface compared to the original granules.  相似文献   

15.
Dry and wet sludge samples were collected from the sewage sludge storage site and primary treatment ponds at As-Samra Wastewater Treatment Ponds in Al Hayshmia, Jordan. The concentrations of polynuclear aromatic hydrocarbons (PAH) and macro- and microelements were determined using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively.

Environmentally relevant concentrations of PAH were detected ranging from 62 μg g?1 to 70 μg g?1 for dry sludge and from 35 μg g?1 to 47 μg g?1 for wet sludge. These results indicated a potential environmental risk if sewage sludge is reused in Jordan as organic fertilizer without first being treated. The results of the study showed that the sewage sludge samples were contaminated with low levels of heavy metals, as the dry sludge samples were characterized by higher concentrations of most analyzed elements than for wet sludge samples. Still, none of the trace metal concentrations exceeded the threshold concentration levels for agricultural-related sludge.

Unlike many other nutrients found in sludge, the Total Organic Carbon (TOC%) found in dry and wet sludge revealed similar values, at 13.18 percent and 13.29 percent, respectively. The total phosphorus ranged from 0.25% for dry sludge to 0.47% for wet sludge. Total nitrogen varied from 0.80% for wet sludge to 1.01% for the dry sludge samples. The overall nutrients levels are close to those found in the literature. The findings of this study have improved the understanding of sewage sludge characteristics in a semiarid environment.  相似文献   


16.
The effect of 2-hydroxybenzoate (2-OHB, salicylate) on the mineralization rate of [14C]naphthalene, the population density of naphthalene-degrading bacteria, and the concentration of genes encoding for naphthalene dioxygenase in a soil bacterial community was investigated. Six different concentrations of 2-OHB (10, 20, 50, 100, 150 and 200 g g–1 soil) were tested in 100-g portions of soil. The addition of 10, 20 or 50 g 2-OHB g–1 soil produced a general increase in total soil bacterial population density, whereas the addition of 100 g or 200 g 2-OHB g–1 soil specifically increased the proportion of naphthalene degraders relative to the total population. The addition of 50 g 2-OHB g–1 soil produced a fourfold increase (the maximum observed) in the rate of naphthalene mineralization relative to the rate in unamended soil. The concentration of 2-OHB ( 100 g/g) added to soil correlated with the population density of naphthalene degraders (r=0.961). Addition of up to 200 g 2-OHB g–1 correlated with the abundance of DNA sequences homologous to known naphthalene dioxygenase genes (nahAB) (r=0.958). However, mineralization of [14C]naphthalene was stimulated significantly only by the addition of 50 g 2-OHB g–1 soil. Results of the mineralization experiments were supported by the detection of nahAB mRNA extracted directly from soil. The specificity of the effect of 2-OHB on naphthalene biodegradation was confirmed in a control experiment using equivalent concentrations of 4-OHB which repressed naphthalene mineralization by about 50%. Addition of ammonium nitrate to the soil also increased the rate of naphthalene mineralization. Ammonium nitrate added together with 2-OHB reduced the mineralization enhancement effect of either compound alone. The study confirmed that specific induction of biodegradative genes can enhance chemical pollutant removal in situ. Correspondence to: O. A. Ogunseitan  相似文献   

17.
High-throughput sequencing of the 16S rRNA gene fragments was used to determine the phylogenetic diversity of prokaryotes, including human pathogens, in the liquid phase of the sludge of a biogas reactor processing oil-containing and municipal waste. A unique microbial community was found to develop in the sludge, which comprised the microorganisms of municipal wastewater (bacteria of human feces) and specific groups of aerobic and anaerobic microorganisms, which possibly arrived with oil-containing water. In the 16S rRNA gene library, the sequences of representatives of Firmicutes prevailed (54.9%), which belonged to anaerobic bacteria of the genera Gelria (26.6%), Syntrophomonas (6.0%), Lutispora (2.0%), and uncultured Clostridia (group MBA03, 11.1%). The Proteobacteria sequences (20.7%) belonged mostly to the metabolically diverse members of the genus Pseudomonas (13.8%). The phylum Bacteroidetes (7%) was represented by uncultured bacteria (VadinBC27 wastewater-sludge group), while members of the phylum Cloacimonetes were mainly syntrophic bacteria Candidatus Cloacamonas (7.5%). The sequences of bacteria commonly occurring in oilfields (Clostridia, Anaerolinea, Bacteroidetes, sulfate-reducing Deltaproteobacteria, members of the family Syntrophaceae, and of the genera Thauera, Pseudomonas, Dechloromonas, and Petrimonas) were revealed. No sequences of bacteria known to be pathogenic to humans were found. The cultured microorganisms were aerobic organotrophic and anaerobic fermenting, denitrifying, and methanogenic prokaryotes. Fermenting and methanogenic enrichments grew on a broad range of organic substrates (sucrose, glycerol, starch), producing volatile fatty acids (acetate, n-butyrate, and propionate), gases (Н2, СО2, and CH4), and decreasing pH of the medium from 7.0 to 4.5–5.0. The possible application of the biogas reactor sludge as a source of fermenting and methanogenic anaerobic prokaryotes, as well as of aerobic hydrocarbonoxidizing bacteria for oilfield introduction and for production of new preparations for enhanced oil recovery and for bioremediation of oil contamination is discussed.  相似文献   

18.
Summary As a potential measure of active biomass in an automated and continuous system, enzyme activities of activated sludge were sought that would allow a rapid and accurate determination. Using p-nitrophenylphosphate, bis-p-nitrophenylphosphate, p-nitrophenyl-- and -D-gluco- or galactopyranosides, and the p-nitroanilides of L-alanine, L-leucine, L-lysine, L-glutamic acid and L-phenylalanine, we could establish that the corresponding phosphatase, cyclic phosphodiesterase, glycosidase and aminopeptidase activities can be conveniently tested with diluted activated sludge within 10–20 min incubation at 30°C. The reactions were linear with time and concentration of activated sludge. The specific activities were in the range from 1 to 50 nmol substrate cleaved/min/mg protein at 30°C. They were diminished by starvation or poisoning with zinc powder, ZnCl2, HgCl2 or KCN. The enzymes were over 95% sedimented together with the flocs. Comparable activities were found in sludges from three independent sewage works in the Munich area. At the same time, dehydrogenase activities and ATP contents were investigated under several conditions.  相似文献   

19.
To decrease the HS and induce effective anaerobic digestion of waste-activated sludge (WAS), the micro-organisms concentration within the sludge were ruptured by a mechanical jet stream and smashed under a pressure of 30 bar. Using this procedure, the HS concentration was decreased from 30-50 mg/l of intact WAS to 27-240 g/l.  相似文献   

20.
The potential of 3,3,4,5-tetrachlorosalicylanilide (TCS) addition to an activated sludge continuous process to reduce excess sludge production by disrupting coupling between anabolism and catabolism was investigated. TCS was chosen as a metabolic uncoupler for continuous test in a lab-scale completely mixed activated sludge process. TCS reduced sludge yield by approximately 30% at a dosage of 40 mg/day. Substrate removal capability was not adversely affected by the presence of TCS, but effluent nitrogen concentration increased during the 60-day continuous operation. Sludge settleability of treated and control samples was qualitatively comparable and not significantly different. Microbial activities in terms of specific oxygen uptake rate were also enhanced, and the microbial population was altered. The results suggest that TCS is an effective chemical uncoupler that reduces sludge yield; process performance was not significantly affected by introduction of the uncoupler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号