首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nucleotide sequence of cytoplasmic 5S ribosomal RNAs from three gymnosperms,Pinus contorta, Taxus baccata andJuniperus media and from one fern,Pteridium aquilinum, have been determined. These sequences were aligned with all hitherto known cytoplasmic 5S ribosomal RNA sequences of photosynthetic eukaryotes. A dendrogram based on that set of sequences was constructed by a distance matrix method and the resulting tree compared with established views concerning plant and algal evolution. The following monophyletic groups of photosynthetic eukaryotes are recognizable: theRhodophyta, a group consisting ofPhaeophyta, Bacillariophyta andChrysophyta, and the green plants, the latter comprising green algae,Bryophyta, Pteridophyta andSpermatophyta. According to our 5S ribosomal RNA tree, green plants may have originated from some type of a green flagellated organism such asChlamydomonas. The land plants seem to have originated from some form of charophyte such asNitella. 5S ribosomal RNA seems to be less appropriate to estimate dissimilarities between species which have diverged relatively recently, like the angiosperms. Therefore, a precise evolutionary process is difficult to reconstruct for members of this group.  相似文献   

2.
3.
小鲵科线粒体16S rRNA基因序列分析及其系统发育   总被引:9,自引:0,他引:9  
李悦  吴敏  王秀玲 《动物学报》2004,50(3):464-469
To study the phylogeny of Hynobiidae, we amplified DNA fragments of 470 bp 16S ribosomal RNA (16S rRNA) gene on mitochondrial DNA from Ranodon sibiricus and Ranodon tsinpaensis. PCR products were cloned into PMD18 T vector after purification. These sequences were determined and deposited in the GenBank (accession numbers: AY373459 for Ranodon sibiricus, AY372534 for Ranodon tsinpaensis). By comparing the nucleotide differences of 16S ribosomal RNA sequences among Liua shihi, Pseudohynobius flavomaculatus and Batrachuperus genus from GenBank database, we analyzed the divergences and base substitution among these sequences with the MEGA software. The molecular results support that B. tibetanus, B. pinchonii and B. karlschmidti are classified into three valid species. Liua shihi has closer phylogenetic relationships to Ranodon tsinpaensis than to other species. More our results reveal that Pseudohynobius flavomaculatus is not a synonym of Ranodon tsinpaensis. [Acta Zoologica Sinica 50 (3) : 464 - 469,2004].  相似文献   

4.
Different hypotheses have been proposed on the phylogenetic relationships of branchiobdellidans and aphanoneurans among the Annelida based on the anatomical and embryological characters. The 18S ribosomal RNA gene sequences have been analyzed from representatives of the three major taxa of the Annelida plus the branchiobdellidans and aphanoneurans to assess their phylogenetic relationships to each other. In this preliminary study, all of the phylogenetic analyses show the branchiobdellidans as a sister group to the leeches, rather than the oligochaetes. The position of the aphanoneurans is stable as an independent taxon that evolved after the polychaetes branched from the evolutionary stem, but before the ancestral oligochaetes emerged.  相似文献   

5.
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences   总被引:18,自引:0,他引:18  
A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae.   相似文献   

6.
Some earlier studies suggested an evolutionary relationship between the Raphidophyceae (chloromonads) and Xanthophyceae (yellow-green algae), whereas other studies suggested relationships with different algal classes or the öomycete fungi. To evaluate the relationships, we determined the complete nucleotide sequences of the 18S ribosomal RNA gene from the raphidophytes Vacuolaria virescens, Chattonella subsalsa, and Heterosigma carterae, and the xanthophytes Vaucheria bursata, Botrydium stoloniferum, Botrydiopsis intercedens, and Xanthonema debile. The results showed that the Xanthophyceae were most closely related to the Phaeophyceae. A cladistic analysis of combined data sets (nucleotide sequences, ultrastructure, and pigments) suggested the Raphidophyceae are the sister taxon to the Phaeophyceae-Xanthophyceae clade, but the bootstrap value was low (40%). The raphidophyte genera were united with high (100%) bootstrap values, supporting a hypothesis based upon ultrastructural features that marine and freshwater raphidophytes form a monophyletic group. We examined the relationship between Vaucheria, a siphoneous xanthophyte alga, and the öomycetes, and we confirmed that Vaucheria is a member of the class Xanthophyceae. Partial nucleotide sequences of the 18S rRNA gene from eight xanthophytes (including Bumillariopsis filiformis, Heterococcus caespitiosus, and Mischococcus sphaerocephalus) produce a phylogeny that is not congruent with the current morphology-based classification scheme.  相似文献   

7.
The organization of 5S ribosomal RNA genes (rDNA) was examined for threeJapanese Laminaria species, L. japonica, L.religiosa and L. ochotensis. The linkage of 5SrDNA with the 18S-5.8S-25S rDNAs unit known in the brown algaScytosiphon lomentaria could not be detected inLaminaria. Instead, the tandem repeats of 5S rDNA were notassociated with the 18S-5.8S-25S rDNAs unit. The nucleotide sequence of 5S rDNAwas completely identical among these three species and its length was 118bp. However, a difference of nucleotide arrangement was detectedinthe spacer region of the tandemly repeated 5S rDNAs. Several nucleotideinsertion / deletions and substitutions were confirmed between differentindividuals of L. japonica, which were collected from notonly disjunct localities, but also the same locality. The lengths of the spacerregion of L. japonica, L. religiosaand L. ochotensis were 247–252 bp, 232bp and 252 bp, respectively.  相似文献   

8.
Summary The nucleotide sequences of the 5S and 5.8S rRNAs of eight strains of tetrahymenine ciliates have been determined. The sequences indicate a clear distinction betweenTetrahymena paravorax and its suggested conspecificT. vorax, but leave the taxonomic distinction betweenT. vorax andT. leucophrys in doubt. The rRNA sequences of sixTetrahymena species and of three other species of the suborder Tetrahymenina have been used to deduce evolutionary schemes in which ancestral rRNA sequences and changes are proposed. These schemes suggest the predominant acceptance of GA and CT transitions in the 5S rDNA during the evolution of the suborder.  相似文献   

9.
Summary There are sequences homologous to 5S ribosomal RNA in the ribosomal DNA (rDNA) repeats of the plant-parasitic nematodeMeloidogyne arenaria. This is surprising, because in all other higher eukaryotes studied to date, the genes for 5S RNA are unlinked to and distinct from a tandem rDNA repeat containing the genes for 18S, 5.8S, and 28S ribosomal RNA. Previously, only prokaryotes and certain lower eukaryotes (protozoa and fungi) had been found to have both the larger rRNAs and 5S rRNA represented within a single DNA repeat. This has raised questions on the organization of these repeats in the earliest cell (progenote), and on subsequent evolutionary relationships between pro- and eukaryotes.Evidence is presented for rearrangements and deletions withinMeloidogyne rDNA. The unusual life cycles (different levels of ploidy, reproduction by meiotic and mitotic parthenogenesis) of members of this genus might allow rapid fixation of any variants with introduced 5S RNA sequences. The 5S RNA sequences inMeloidogyne rDNA may not be expressed, but their presence raises important questions as to the evolutionary origins and stability of repeat gene families.  相似文献   

10.
Summary The nucleotide sequences of 5S rRNAs from three protozoa,Bresslaua vorax, Euplotes woodruffi andChlamydomonas sp. have been determined and aligned together with the sequences of 12 protozoa species including unicellular green algae already reported by the authors and others. Using this alignment, a phylogenic tree of the 15 species of protozoa has been constructed. The tree suggests that the ancestor for protozoa evolved at an early time of eukaryotic evolution giving two major groups of organisms. One group, which shares a common ancestor with vascular plants, contains a unicellular green flagellate (Chlamydomonas) and unicellular green algae. The other group, which shares a common ancestor with the multicellular animals, includes various flagellated protozoa (includingEuglena), ciliated protozoa and slime molds. Most of these protozoa appear to have separated from one another at a fairly early period of eukaryotic evolution.  相似文献   

11.
Summary The 5S ribosomal RNA sequences have been determined for the rhodoplast of the red algaPorphyra umbilicalis and the chloroplast of the coniferJuniperus media. The 5S RNA sequence of theVicia faba chloroplast is corrected with respect to a previous report. A survey of the known sequences and secondary structures of 5S RNAs from plastids and cyanobacteria shows a close structural similarity between all 5S RNAs from land plant chloroplasts. The algal plastid 5S RNAs on the other hand show much more structural diversity and have certain structural features in common with bacterial 5S RNAs. A dendrogram constructed from the aligned sequences by a clustering algorithm points to a common ancestor for the present-living cyanobacteria and the land plant plastids. However, the algal plastids branch off at an early stage within the plastid-cyanobacteria cluster, before the divergence between cyanobacteria and land plant chloroplasts. This evolutionary picture points to the occurrence of multiple endosymbiotic events, with the ancestors of the present algal plastids already established as photosynthetic endosymbionts at a time when the ancestors of the present land plant chloroplasts were still free-living cells.  相似文献   

12.
The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5′ domain as well as the 3′ minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5′ domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3′ minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5′ and 3′ minor, are organized relative to S20 at different stages of assembly. The 5′ domain acquires, in a less complex ribonucleoprotein particle than the 3′ minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5′-to-3′ direction assembly model.  相似文献   

13.
In the analysis of DNAase II digestion of chromatin, as described in the preceding paper, interactions between adjacent nucleosomes play an important part. In order to understand the mechanism of DNAase II cleavage we next investigated the role of histone H1 in these interactions and characterized the nucleoprotein particles arising in the course of DNAase II action.H1-free chromatin prepared by three different procedures, using either 0.6 m-NaCl, transfer RNA or an ion-exchange resin, can be cleaved by DNAase II only at the internucleosomal cleavage site leading to 200-bp2 digestion patterns regardless of the ionic conditions. When H1 was added back to the three chromatin preparations the 100-bp cleavage pattern could be restored only with material prepared by the resin method at low concentrations of salt. Addition of polylysine instead of H1 has the same effect, but only with material prepared by that method. A direct correlation between extended and condensed states of chromatin as monitored by electron microscopy and DNAase II cleavage in the 200 and 100-bp modes, respectively, could be established.The continuity of the nucleosome chains in DNAase II-digested chromatin is maintained in spite of intranucleosomal cleavage in the terminal section of the core DNA, even in the absence of H1. Addition of 3 m-urea, however, disrupts the nucleosome chains at the intranucleosomal cleavage sites and leads to the formation of novel nucleoprotein particles as seen in sucrose gradient centrifugations. Those sedimenting between mononucleosomes and dinucleosomes contain, almost exclusively, DNA of 300 bp (mouse) or 315 bp (chicken erythrocyte). They can be formed from particles sedimenting in the absence of urea in the dinucleosome region by either a dissociation process or a massive conformational change.On the basis of the results presented here and in the preceding paper a mechanism for DNAase II cleavage of chromatin in the 200-bp and 100-bp modes is proposed and discussed in the context of structural features of chromatin recognized by DNAase II.  相似文献   

14.
Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11   总被引:9,自引:0,他引:9  
One 5S ribosomal RNA gene (5S rDNA) locus was localized on chromosome 11 of japonica rice by in situ hybridization. The biotinylated DNA probe used was prepared by direct cloning and direct labeling methods, and the locus was localized to the proximal region of the short arm of chromosome 11 (llpl.l) by imaging methods. The distance between the signal site and the centromere is 4.0 arbitrary units, where the total length of the short arm is 43.3 units. The 5S rDNA locus physically identified and mapped in rice was designated as 5SRrn. The position of the 5S rDNA locus reported here differs from that in indica rice; possible reasons for this difference are discussed. DNA sequences of 5S rDNA are also reported.  相似文献   

15.
Summary The effects of temporal (among different branches of a phylogeny) and spatial (among different nucleotide sites within a gene) nonuniformities of nucleotide substitution rates on the construction of phylogenetic trees from nucleotide sequences are addressed. Spatial nonuniformity may be estimated by using Shannon's (1948) entropy formula to measure the Relative Nucleotide Variability (RNV) at each nucleotide site in an aligned set of sequences; this is demonstrated by a comparative analysis of 5S rRNAs. New methods of constructing phylogenetic trees are proposed that augment the Unweighted Pair-Group Using Arithmetic Averages (UPGMA) algorithm by estimating and compensating for both spatial and temporal nonuniformity in substitution rates. These methods are evaluated by computer simulations of 5S rRNA evolution that include both kinds of nonuniformities. It was found that the proposed Reference Ratio Method improved both the ability to reconstruct the correct topology of a tree and also the estimation of branch lengths as compared to UPGMA. A previous method (Farris et al. 1970; Klotz et al. 1979; Li 1981) was found to be less successful in reconstructing topologies when there is high probability of multiple mutations at some sites. Phylogenetic analyses of 5S rRNA sequences support the endosymbiotic origins of both chloroplasts and mitochondria, even though the latter exhibit an accelerated rate of nucleotide substitution. Phylogenetic trees also reveal an adaptive radiation within the eubacteria and another within the eukaryotes for the origins of most major phyla within each group during the Precambrian era.  相似文献   

16.
Summary The complete nucleotide sequences of 5S ribosomal RNAs fromRhodocyclus gelatinosa, Rhodobacter sphaeroides, andPseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains.Rhodobacter sphaeroides is specifically related toParacoccus denitrificans andRc. gelatinosa is related toPs. cepacia.These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found inP. denitrificans are present also in the 5S RNA ofRb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of our obtaining these new sequences is that we are able to clarify the phylogenetic origins of the plant mitochondrion. In particular, we find a close phylogenetic relationship between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely,Rb. sphaeroides, P. denitrificans, andRhodospirillum rubrum.  相似文献   

17.
Part of the mitochondrial 12S ribosomal RNA gene was amplified and sequenced for 26 marsupials. Multiple alignments for these sequences as well as seven additional sequences taken from GenBank were obtained using CLUSTAL. PAUP was used for phylogenetic analysis and to obtain random tree-length distributions. Analyses were performed with and without phylogenetic constraints. Our results clearly show that 12S rDNA contains phylogenetic signal at and above the ordinal level and is thus appropriate for addressing phylogenetic questions deep in the mammalian tree. Standard parsimony analyses provide some support for a clade containing diprotodontians, dasyurids,Dromiciops, andNotoryctes; transversion parsimony analysis suggests the possible inclusion of peramelids as well. Within the Diprotodontia, vombatids and phascolarctids cluster together on transversion parsimony and phalangerids may be associated with this clade. The enigmatic tarsipedids are apparently part of a clade that also contains pseudocheirids, petaurids, and acrobatids. The 12S sequences suggest that the origination of extant marsupial orders peaked 15 million years later than the equivalent taxonomic diversification of extant placental orders and may be entirely post-Cretaceous. Families of diprotodontian marsupials originated during the Eocene and early Oligocene, which is consistent with previous single-copy DNA hybridization results.  相似文献   

18.
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.  相似文献   

19.
Summary 5S Ribosomal RNA sequences have proven to be useful tools in the study of evolutionary relationships among species. However, in reviewing previously published trees constructed from alignments of metazoan 5S RNAs, we noticed several discrepancies with classical evolutionary views. One such discrepancy concerned the phylum Arthropoda, where a crustacean,Artemia salina, seemed to be evolutionarily very remote from four insects. The cause of this phenomenon was studied by determining the 5S RNA sequences of additional arthropods, viz.Limulus polyphemus, Eurypelma californica, Lasiodora erythrocythara, Areneus diadematus, Daphnia magna, Ligia oceanica, Homarus gammarus, Cancer pagurus, Spirobolus sp.,Locusta migratoria, andTenebrio molitor. A tree was then constructed from a dissimilarity matrix by a clustering method known as weighted pair grouping. Application of a correction for unequal evolutionary rates improved the apparent evolutionary position of the arthropods and of some other metazoan species. However, neither the uncorrected nor the corrected tree permitted a completely acceptable reconstruction of metazoan evolution. We presume that this phenomenon is due to random deviations in the evolutionary rate of 5S RNA.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

20.
Summary The complete small ribosomal subunit RNA (srRNA) sequence was determined for the red algaPorphyra umbilicalis and the basidiomyceteLeucosporidium scottii, representing two taxa for which no srRNA sequences were hitherto known. These sequences were aligned with other published complete srRNA sequences of 58 eukaryotes. Evolutionary trees were reconstructed by a matrix optimization method from a dissimilarity matrix based on sections of the alignment that correspond to structurally conservative areas of the molecule that can be aligned unambiguously. The overall topology of the eukaryotic tree thus constructed is as follows: first there is a succession of early diverging branches, leading to a diplomonad, a microsporidian, a euglenoid plus kinetoplastids, an amoeba, and slime molds. Later, a nearly simultaneous radiation seems to occur into a number of taxa comprising the metazoa, the red alga, the sporozoa, the higher fungi, the ciliates, the green plants, plus some other less numerous groups. Because the red alga diverges late in the evolutionary tree, it does not seem to represent a very primitive organism as proposed on the basis of morphological and 5S rRNA sequence data. Asco- and basidiomycetes do not share a common ancestor in our tree as is generally accepted on the basis of conventional criteria. In contrast, when all alignment positions, rather than the more conservative ones, are used to construct the evolutionary tree, higher fungi do form a monophyletic cluster. The hypothesis that higher fungi and red algae might have shared a common origin has been put forward. Although the red alga and fungi seem to diverge at nearly the same time, no such relationship can be detected. The newly determined sequences can be fitted into a secondary structure model for srRNA, which is now relatively well established with the exception of uncertainties in a number of eukaryote-specific expansion areas. A specific structural model featuring a pseudoknot is proposed for one of these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号