首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical syntheses of a number of C27 15-oxygenated sterols and their derivatives have been pursued to permit evaluation of their activity in the inhibition of sterol biosynthesis in animal cells in culture. Described herein are chemical syntheses of 3 alpha-benzoyloxy-5 alpha-cholest-8(14)-en-15-one, 5 alpha-cholest-8(14)-en-3 alpha-ol-15-one, 5 alpha-cholest-8(14)-en-15-one-3 beta-yl pyridinium sulfate, 5 alpha-cholest-8(14)-en-15-one-3 beta-yl potassium sulfate (monohydrate), 5 alpha-cholest-8(14)-en-15-one-3 alpha-yl pyridinium sulfate, 5 alpha-cholest-8(14)-en-3 alpha-yl potassium sulfate (monohydrate), 5 alpha-cholest-8(14)-en3,7,15-trione, 5 alpha-cholest-8(14)-en-15 alpha-ol-3-one, 5 alpha, 14 alpha-cholestan-3 beta, 15 beta-diol diacetate, 5 alpha, 14 beta-cholestan-3 beta, 15 beta-diol diacetate, 5 alpha, 14 alpha-cholestan-3 beta, 15 alpha-diol, 5 alpha, 14 alpha-cholestan-15 alpha-ol-3-one, 5 alpha, 14 beta-cholestan-3 beta, 15 beta-diol, 5 alpha, 14 alpha-cholestan-3,15-dione, and 5 alpha, 14 beta-cholestan-3,5-dione. The effects of 8 of the above compounds and of 5 alpha-cholesta-6,8(14)-dien-3 beta-ol-15-one, 3 beta-he misuccinoyloxy-5 alpha-cholest-8(14)-en-15 one, 3 beta-hexadecanoyloxy-5 alpha-cholest-8(14)-en-15-one, 5 alpha-cholest-8(14)-en-3,15-dione, 5 alpha-cholesta-6,8(14)-dien-3,15-dione, 5 alpha-cholest-8-en-3 beta, 15 alpha-diol, 5 alpha-cholest-7-en-3 beta, 15 alpha-diol, 5 alpha-cholest-8(14)-en-15 alpha-ol-3-one, 5 alpha-cholest-8-en-15 alpha-ol-3-one, and 5 alpha-cholest-7-en-15 alpha-ol-3-one on the synthesis of digitonin-precipitable sterols and on levels of HMG-CoA reductase activity have been investigated and compared with previously published data on 7 other C27 15-oxygenated sterols.  相似文献   

2.
Seven sulfated polyhydroxysteroids were isolated from the Far East starfish Pteraster obscurus and the ophiura (snake star) Asteronyx loveni (collected in the Sea of Okhotsk) and characterized: disodium and sodium salts of (20R)-24-methyl-2beta-hydroxycholesta-5,24(28)-diene-3alpha,21-diyl disulfate, (20R)-5alpha-cholestane-3beta,21-diyl disulfate, (20R)-3beta-hydroxy-5alpha-cholestan-21-yl sulfate, (20R)-cholest-5-ene-3beta,21-diyl disulfate, (20R)-2beta-hydroxycholest-5-ene-3alpha,21-diyl disulfate, (20R)-cholest-5-en-3beta-yl sulfate, and (20R)-5alpha-cholestan-3beta-yl sulfate. The first four compounds turned out to be new, whereas the others were identical to the known compounds. Structures of the isolated steroids were identified by two-dimensional NMR spectroscopy and other physicochemical methods. The compounds isolated from starfish are structurally similar to typical ophiuroid metabolites, which support the opinion of some taxonomists that starfish and ophiuroids are phylogenetically related classes.  相似文献   

3.
F F Knapp  G J Schroepfer 《Steroids》1975,26(3):339-357
Described herein are chemical syntheses of the following compounds: 4-methyl-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4,4-dimethyl-(24S)-24-ethyl-cholesta-5,22-dien-3-one, 4beta-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24S)-24-ethyl-5alpha-cholest-22-en-3beta-ol, 4-methyl-6beta-bromo-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4alpha-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol, 4alpha,5alpha-epoxy-(24S)-24-ethyl-cholesta-4,22-dien-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholest-22-en-3beta,5alpha-diol, 4beta-methyl-5alpha-hydroxy-(24S)-24-ethyl-cholest-22-en-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-yl acetate and 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol. Chromatographic, nuclear magnetic resonance, and mass spectral data are presented for the compounds under consideration.  相似文献   

4.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

5.
The chemical syntheses of a number of C27 ring C oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of sterol biosynthesis in cultured mammalian cells. Thus, 5 alpha-cholest-7-ene-3 beta, 11 alpha-diol, 3 alpha-hydroxy-5 alpha-cholest-9(11)-en-12-one, and the previously unreported 11 alpha-hydroxy-5 alpha-cholest-7-en-3-one, 5 alpha-cholest-9(11)-ene-3,12-dione, and 3 beta-hydroxy-5 alpha-cholest-9 (11)-en-12-one have been synthesized. The effects of these compounds on the synthesis of digitonin-precipitable sterols from labeled acetate in mouse L cells and on the levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in the same cells have been investigated and compared with previously published data on other ring C oxygenated sterols. 5 alpha-Cholest-7-ene-3 beta, 11 alpha-diol was shown to be the most potent inhibitor of sterol synthesis.  相似文献   

6.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

7.
Cerebrotendinous xanthomatosis is a rare, inherited disease characterized by defective bile acid biosynthesis as well as by accumulation of cholesterol and cholestanol. The mechanism behind the accumulation of cholestanol is unknown. Using combined gas chromatography-mass spectrometry, 5 alpha-cholestane-3 beta, 7 alpha-diol could be identified as a minor component in bile from two such patients. There were no significant amounts of this steroid in bile from control subjects. Most probably, the 5 alpha-cholestan-3 beta, 7 alpha-diol found is formed from 7 alpha-hydroxy-4-cholesten-3-one in the liver. 7 alpha-Hydroxy-1-cholesten-3-one, being a normal intermediate in bile acid biosynthesis, is known to accumulate in the liver and bile of patients with cerebrotendinous xanthomatosis, due to a defect of the mitochondrial 26-hydroxylase. The possibility was tested that (7 beta-3H)-labeled 5 alpha-cholestane-3 beta, 7 alpha-diol could be converted into cholestanol by a direct 7 alpha-dehydroxylation in the intestine. This conversion did not occur in rabbits, however, regardless of whether the labelled steroid was administered orally or intracoecally. It is concluded that 5 alpha-cholestane-3 beta, 7 alpha-diol is of little or no importance as a precursor to cholestanol in rabbits. Most probably, this is also the case in patients with cerebrotendinous xanthomatosis.  相似文献   

8.
Biosynthesis of cholestanol: 5-alpha-cholestan-3-one reductase of rat liver   总被引:4,自引:0,他引:4  
The 3-beta-hydroxysteroid dehydrogenase of rat liver which catalyzes the conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol is localized mainly in the microsomal fraction. The enzyme required NADPH as hydrogen donor and differed from the known 3-beta-hydroxysteroid dehydrogenases of the C(19) series in being inactive in the presence of NADH. The microsomal preparations did not reduce the 3-keto groups of cholest-4-en-3-one, cholest-5-en-3-one, or 5beta-cholestan-3-one to the corresponding 3beta-hydroxy compounds. The conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol was only slightly inhibited by the reaction product or by other monohydroxy steroids, but a strong inhibitory effect was noted with cholest-5-en-3-one, 5alpha-cholestane-3beta, 7alpha-diol and 5alpha-cholestan-7-on-3beta-ol. The microsomes, but not high speed supernatant solution, catalyzed the reverse of the cholestanone reductase reaction, namely the conversion of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3-one in the presence of oxygen and an NADP-generating system. The action of the microsomal preparations upon 5alpha-cholestan-3-one produced 5alpha-cholestan-3alpha-ol in addition to the 3beta-epimer. The 3-alpha-hydroxysteroid dehydrogenase involved functioned with either NADH or NADPH as hydrogen donor. The ratio of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3alpha-ol formed from 5alpha-cholestan-3-one was approximately 10:1 and was independent of the sex of the animal from which the microsomes were prepared.  相似文献   

9.
A Ghoshal  G Feuer 《Steroids》1984,43(6):621-630
Microsomes isolated from the liver of the female rat specifically bind progesterone. The progesterone-microsomal complex shows highly specific characteristics. The binding is probably associated with the carbonyl groups at positions C-20 and C-3. Other steroids compete for microsomal binding sites less effectively. Competition for progesterone binding sites by other steroids in percentages: testosterone 33; testosterone propionate, 9; 17-methyltestosterone, 23.2; cortisol, 6.4; estradiol-17 beta, 1.8; 17 alpha-ethynyl estradiol, 4.7; mestranol, 1.0; norethynodrel, 4.5; ethisterone, 7.1; lynestrenol, 4.3; medroxyprogesterone, 23.3; medroxyprogesterone acetate, 15.2; 5 alpha-pregnane-3,20-dione, 47.6; 5 beta-pregnane-3,20-dione, 20.7; pregnenolone, 14.8; 6-methylpregnenolone, 1.2; 16 alpha-methylpregnenolone, 3.8%; 20 beta-hydroxy-4-pregnen-3-one, 2.8; 3 beta-hydroxy-5 alpha-pregnan-20-one, 5.2; 4-pregnene-3 beta, 20 beta-diol, 2.1; 11 alpha-hydroxyprogesterone 21.0; 16 alpha-hydroxyprogesterone, 7.9; 17-hydroxyprogesterone, 26.7; 16 alpha, 17-epoxyprogesterone, 2.7; 16 alpha-methylprogesterone, 3.8; 6-methylpregnenolone, 1.2; 16 alpha-methylpregnenolone, 3.8; promegestone, 27.0. 3 beta-Hydroxy-5 beta-pregnan-20-one, 3 alpha-hydroxy-5 beta-pregnan-20-one, 5-pregnene-3 beta,20 beta-diol, 5-pregnene-3 beta, 20 alpha-diol; 5 alpha-pregnane-3 beta, 20 beta-diol, 5 alpha-pregnane-3 beta, 20 alpha-diol, 5 beta-pregnane-3 alpha, 20 alpha-diol, 5 beta-pregnane-3 alpha, 20 alpha-diol diacetate, 5 beta-pregnane-3 alpha, 20 beta-diol, 3 alpha, 17-dihydroxy-5 beta-pregnan-20-one, 17-hydroxypregnenolone, 6-methyl-17-hydroxypregnenolone, pregnenolone-16 alpha-carbonitrile, dihydrotestosterone and cholesterol show no competition at all. The varying degree of competition by different steroids is unrelated to their lipid solubility.  相似文献   

10.
1. The metabolism of 3-(3a alpha-hexahydro-7a beta-methyl-1,5-dioxoindan-4 alpha-yl)propionic acid (III), which is a possible precursor of 2,3,4,6,6a beta, 7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-1H-cyclopenta[f]quinoline-3,7-dione (II) formed from cholic acid (I) by streptomyces rubescens, was investigated by using the same organism. 2. This organism effected amide bond formation, reduction of the carbonyl groups, trans alpha beta-desaturation and R-oriented beta-hydroxylation of the propionic acid side chain and skeleton cleavage, and the following metabolites were isolated as these forms or their derivatives: compound (II), 1,2,3,4 a beta,-5,6,6a beta,7,8,9a alpha,9b beta-dodecahydro-6a beta -methylcyclopental[f][1]benzopyran-3,7-dione (IVa), (1R)-1,2,3,4a beta,5,6,6a beta,7,8,9.9a alpha,9b beta-dodecahydro-1-hydroxy-6a beta-methylcyclopenta[f][1]benzopyran-3,7-dione (IVb), (E)-3-(3aalpha-hexahydro-5 alpha-hydroxy-7a beta-methyl-l-oxo-indan-4 alpha-yl)prop-2-enoic acid (V), (+)-(5R)-5-methyl-4-oxo-octane-1,8-dioic acid (VI), 3-(4-hydroxy-5-methyl-2-oxo-2H-pyran-6-yl)propionic acid (VII) and 3-(3a alpha-hexahydro-1 beta-hydroxy-7a beta-methyl-5-oxoindan-4 alpha-yl)propionic acid (VIII). The metabolites (IVb), (V), (VI) and (VII) were new compounds, and their structures were established by chemical synthesis. 3. The question of whether these metabolites are true degradative intermediates is discussed, and a degradative pathway of compound (III) to the possible precursor of compound (VII), 7-carboxy-4-methyl-3,5-dioxoheptanoyl-CoA (IX), is tentatively proposed. The further degradation of compound (IX) to small fragments is also considered.  相似文献   

11.
Yang QX  Zhang YJ  Li HZ  Yang CR 《Steroids》2005,70(10):732-737
Six new polyhydroxylated steroidal saponins, tupistrosides A-F (1-6), together with nine known steroids, were isolated from the fresh rhizomes of Tupistra yunnanensis. Their structures were elucidated to be (25S)-1beta,4beta,5beta-trihydroxy-spirostane-3beta-yl O-alpha-l-arabinopyranoside (1), 1beta,24beta-dihydroxy-spirost-5,25(27)-dien-3alpha-yl O-beta-d-glucopyranoside (2), (22S,25S)-1alpha,2beta,3alpha,5alpha-tetrahydroxy-furo-spirostane-26-yl O-beta-d-glucopyranoside (3), 1beta,3alpha,22 xi-trihydroxy-furost-5,25(27)-dien-26-yl O-beta-d-glucopyranoside (4), 26-O-beta-d-glucopyranosyl-1beta,22-dihydroxy-furost-5-en-3alpha-yl O-beta-d-glucopyranoside (5) and 22-methoxy-1beta,2beta,3beta,4beta,5beta,7alpha-hexahydroxy-furost-25(27)-en-6-one-26-yl O-beta-d-glucopyranoside (6), respectively, by means of spectroscopic analysis and the results of acid hydrolysis.  相似文献   

12.
Reactions of cholest-5-ene (I) and its 3 beta-chloro (II) and 3 beta-acetoxy (III) analogs with trimethylchlorosilane-dimethyl sulfoxide in dry acetonitrile furnish cholest-4-en-6 beta-yl methyl sulfide (IV) and its 3 beta-chloro (V) and 3 beta-acetoxy (VI) analogs. Oxidation of (IV) with m-chloroperbenzoic acid affords cholest-4-en-6 beta-yl methyl sulfone (VII) and 4 alpha, 5-epoxy-5 alpha-cholestan-6 beta-yl methyl sulfone (VIII). Under similar reaction conditions, V furnishes 3 beta-chlorocholest-4-en-6 beta-yl methyl sulfone (IX), while VI gives 3 beta-acetoxycholest-4-en-6 beta-yl methyl sulfone (X) and 3 beta-acetoxy-4 alpha, 5-epoxy-5 alpha-cholestan-6 beta-yl methyl sulfone (XI). The structures of these compounds were established on the basis of analytic and spectral data. Some of these compounds have been evaluated for their possible biologic activities.  相似文献   

13.
The metabolism of [3H]progesterone in the rabbit endometrium and myometrium was studied in vitro. The major metabolities identified were 5alpha-pregnane-3,20-dione, 20alpha-hydroxypregn-4-en-3-one, 3beta-hydroxy-5alpha-preganan-20-one and 5alpha-pregnane-3beta,20alpha-diol. Other minor metabolites tentatively identified were 3alpha-hydroxy-5beta-pregnan-20-one,20alpha-hydroxy-5beta-pregnan-3-one and 5beta-pregnane-3alpha,20alpha-diol. The ability of the endometrium to metabolize progesterone on a unit weight bais was about 2.7 times that of the myometrium. The metabolism of [3H]progesterone in the rabbit uterus under the influnce of oestradiol-17beta and progesterone was studied. The ability of the oestradiol-treated rabbit uterus to metabolize progesterone was increased to 3.47 times that of the overiectomized control uterus, whereas the oestradiol-progesterone-treated rabbit uterus metabolized only 1.86 times that of the control. Study of the metabolism of progesterone with uterine subcellular preparations revealed that the 5alpha-reductase enzyme was present mainly in the nuclear fraction; 20alpha-hydroxysteroid dehydrogenase was found in the cytosol fraction and 3beta-hydroxysteroid dehydrogenase in the particulate fraction of the uterus. The metabolic pathways of progesterone in the rabbit uterine tissue are discussed.  相似文献   

14.
M Numazawa  K Kimura  M Nagaoka 《Steroids》1981,38(5):557-565
A novel synthesis of sodium 17-oxo-16 alpha-hydroxy-1,3,5(10)-estratrien-3-yl sulfate (4), sodium 16 alpha, 16 beta-dihydroxy-1,3,5(10)-estratrien-3-yl sulfate (5) and sodium 16-oxo-17 beta-hydroxy-1,3,5(10)-estratrien-3-yl sulfate (6) is described. 16 alpha-Bromo-3-hydroxy-1,3,5(10)-estratrien-17-one (1) was efficiently synthesized in one step with 70-97% yield by bromination of 3-hydroxy-1,3,5(10)-estratrien-17-one with cupric bromide. 3,16 alpha-Dihydroxy-1,3,5(10)-estratrien-17-one (3) was quantitatively obtained by controlled stereospecific hydrolysis of the bromoketone 1 with sodium hydroxide in aqueous pyridine. The bromoketone 1 was converted to the 16 alpha-hydroxy-17-ketone 3-sulfate 4 by sulfation with chlorosulfonic acid in pyridine and a subsequent controlled hydrolysis in a high yield without formation of the other ketols. Treatment of the sulfate 4 with sodium borohydride have the triol sulfate 5. The sulfate 4 was also rearranged to the 17 beta-hydroxy-16-ketone 6 with sodium hydroxide in water in a quantitative yield.  相似文献   

15.
The incubation of [4-14C]testosterone with adult male hamster liver cytosol at pH 6.7 yielded 5 beta-androstane-3 alpha, 17 beta-diol and small quantities of 5 beta-androstane-3 beta, 17 beta-diol, 17 beta-hydroxy-5 beta-androstan-3-one, 3 alpha-hydroxy-5 beta-androstan-17-one and androstenedione. The use of [4-14C]androstenedione as substrate yielded the same 5 beta-metabolites and also testosterone and a trace of epitestosterone. 5 beta-Androstane-3 alpha, 17 beta-diol was the major metabolite at "low" concentrations of substrate but testosterone and 3 alpha-hydroxy-5 beta-androstan-17-one became the major metabolites as the concentration of the substrate was increased. Small quantities of 5 beta-androstane-3,17-dione and 3 beta-hydroxy-5 beta-androstan-17-one were detected at "high" while 5 beta-androstane-3 alpha, 17 alpha-diol was detected at "low" concentrations of androstenedione. NADPH was more effective than NADH except in the formation of the 3 beta-steroids. Furthermore, the 3 beta-steroids were formed in maximum quantities at a lower pH than the other metabolites. The relative production of the metabolites was consistent with their respective spectrophotometrically determined degree of hydroxyl dehydrogenation.  相似文献   

16.
In order to rationalize multiphasic dose-response data evincing mutagenicity towards Salmonella typhimurium TA1537 for sterol hydroperoxides 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide and 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide their metabolism by the bacterial test strain was investigated. The 5 alpha-hydroperoxide was isomerized to the 7 alpha-hydroperoxide and reduced to 5 alpha-cholest-6-ene-3 beta,5-diol; the 7 alpha-hydroperoxide was reduced to cholest-5-ene-3 beta,7 alpha-diol and transformed to 3 beta-hydroxycholest-5-en-7-one. The 3 beta,5 alpha-diol and 3 beta,7 alpha-diol were not interconverted nor was either transformed to the 7-ketone.  相似文献   

17.
Five new steroid sulfates, sodium 2beta,3alpha-dihydroxy-5alpha-cholestane 3-sulfate (6), sodium 2beta,3alpha-dihydroxy-5alpha-cholestane 2-sulfate (7), disodium 2beta,3alpha-dihydroxy-5alpha-cholestane disulfate (8), sodium 3alpha-acetoxy-2beta-hydroxy-5alpha-cholestane 2-sulfate (12), and sodium 2beta-acetoxy-3alpha-hydroxy-5alpha-cholestane 3-sulfate (13), have been synthesized starting from 3beta-hydroxy-5alpha-cholestane (1). The synthetic steroids were completely characterized by one-dimensional and two-dimensional NMR and FABMS spectra. Sulfation was performed using triethylamine-sulfur trioxide complex in dimethylformamide as the sulfating agent. The sulfated steroids were comparatively evaluated for their inhibitory effect on the replication of herpes simplex virus type 2 (HSV-2). Compounds 7 and 8 were the most effective in their inhibitory action against HSV-2. The disulfated steroid 8 also proved to be active against DEN-2 and JV.  相似文献   

18.
1. To identify the intermediates involved in the degradation of cholic acid, the further degradation of (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IVa) by Arthrobacter simplex was attempted. The organism could not utilize this acid but some hypothetical intermediate metabolities of compound (IVa) were prepared for later use as reference compounds. 2. The nor homologue (IIIa) and the dinor homologue (IIIb) of compound (IVa) were prepared by exposure of 3-oxo-24-nor-5beta-cholan-23-oic acid (I) and (20S)-3beta-hydroxy-5-pregnene-20-carboxylic acid (II) to A. simplex respectively. These compounds correspond to the respective metabolites produced by the shortening of the valeric acid side chain of compound (IVa) in a manner analogous to the conventional fatty acid alpha- and beta-oxidation mechanisms. Their structures were confirmed by partial synthesis. 3. The following authentic samples of reduction products of the oxodicarboxylic acids (IIIa), (IIIb) and (IVa) were also synthesized as hypothetical metabolities: (4R)-4-[3aalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]valeric acid (Vb) and its nor homologue (VIIa) and dinor homologue (IXa);(4R)-4-[3Aaalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]-pentan-1-ol (Vc); and their respective 5beta epimers (Ve), (VIIc), (IXc) and (Vf). 4. In connexion with the non-utilization of compound (IVa) by A. simplex, the possibility that not all the metabolites formed from cholic acid by a certain micro-organism can be utilized by the same organism is considered.  相似文献   

19.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

20.
Bile salts of the coelacanth, Latimeria chalumnae, Smith, have been analyzed and shown to have three bile alcohols, latimerol, 5 alpha-cyprinol, and 5 alpha-cholestane-3 beta, 7 alpha,-12 alpha,25,26-pentol, two C24 bile acids, chenodeoxycholic acid and cholic acid, one C26 bile acid, probably 3 beta, 7 alpha, 12 alpha-trihydroxy-27-nor-5 alpha-cholestan-26-oic acid, and two C27 bile acids, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid and 3 beta,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid as determined by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号