首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

2.
Chloroplast ribosomal RNA genes in the chloroplast DNA of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena chloroplast DNA has a buoyant density in CsCI of 1.686. Shearing this DNA produces a satellite band at density 1.700. The satellite, easily lost during preparative CsCI gradient centrifugation of chloroplast DNA, contains the genes for chloroplast ribosomal RNA. Pure Euglena chloroplast DNA is shown to contain one set of ribosomal RNA genes for each 90 × 106 daltons of DNA.  相似文献   

3.

Background

Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering) and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses.

Methodology/Principal Findings

We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge.

Conclusions/Significance

The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus×giganteus, Panicoideae). The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.  相似文献   

4.
DNA was extracted from different morphological types of hypohaploid Nicotiana plumbaginifolia plants. The cellular levels of chloroplast DNA (expressed as percent of total DNA) were found to be approximately two- to threefold higher in two albino hypohaploids than in a green hypohaploid. The level of chloroplast DNA in the green hypohaploid was not significantly different from either in vitro or in vivo grown haploid N. plumbaginifolia plants. Molecular hybridization with DNA probes for the large subunit of ribulose bisphosphate carboxylase from spinach and with Pvull fragments representing the entire Nicotiana tabacum chloroplast genome revealed no gross qualitative differences in the chloroplast DNAs of hypohaploid plants. Based on these observations we have concluded that the lack of chloroplast function observed in the albino forms of hypohaploid N. plumbaginifolia plants is not due to changes in the chloroplast genome.  相似文献   

5.
Sears BB  Boynton JE  Gillham NW 《Genetics》1980,96(1):95-114
In Chlamydomonas reinhardtii, gamete differentiation is induced by nitrogen deprivation. While cellular nitrogen content and amount of chloroplast DNA in cells of both mating types are reduced during gametogenesis, the spontaneous transmission of paternal (mt-) chloroplast alleles in crosses is specifically affected by the stringency of the nitrogen starvation regime used for pregrowth and gametogenesis of the mt- parent. In all cases, reciprocal crosses yielded biparental zygospores whose clones contain predominantly cells expressing only the chloroplast alleles from the maternal (mt+) parent. No differences attributable to strain divergence were seen in chloroplast gene inheritance pattern, DNA content, or the relative frequency of transmission of paternal chloroplast alleles to progeny of biparental zygospores.  相似文献   

6.
7.
Based on analysis by high pressure liquid chromatography, greater than 35% of the cytosine residues in chloroplast DNA of vegetative cells were found to be methylated constitutively in the nuclear gene mutation (me-1) of Chlamydomonas reinhardtii, which has an otherwise wild-type phenotype. Digestion of chloroplast DNA from vegetative cells and gametes of this mutant with restriction endonucleases Hpa II and Msp I reveals that in the 5′CCGG3′ sequence, CpG is methylated extensively, whereas CpC is only methylated occasionally. Hae III (5′GGCC3′) digestion of the mutant chloroplast DNA also shows extensive methylation of the GpC sequence. In contrast to the results of Sager and colleagues, which show a correlation between methylation of chloroplast DNA and transmission of chloroplast genes in crosses, our results with crosses of the me-1 mutant suggest that extensive chloroplast DNA methylation may be insufficient to account for the pattern of inheritance of chloroplast genes in Chlamydomonas.  相似文献   

8.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

9.
10.
Chloroplast DNA variation in pearl millet and related species   总被引:4,自引:0,他引:4  
Clegg MT  Rawson JR  Thomas K 《Genetics》1984,106(3):449-461
The evolution of specific regions of the chloroplast genome was studied in five grass species in the genus Pennisetum, including pearl millet, and one species from a related genus (Cenchrus). Three different regions of the chloroplast DNA were investigated. The first region included a 12-kilobase pair (kbp) EcoRI fragment containing the 23S, 16S and 5S ribosomal RNA genes, which is part of a larger duplicated region of reverse orientation. The second region was contained in a 21-kbp Sa/I fragment, which spans the short single-copy sequence separating the two reverse repeat structures and which overlaps the duplicated copies of the 12-kbp Eco RI fragment. The third region was a 6-kbp EcoRI fragment located in the large single-copy region of the chloroplast genome. Together these regions account for slightly less than 25% of the chloroplast genome. Each of these DNA fragments was cloned and used as hybridization probes to determine the distribution of homologous DNA fragments generated by various restriction endonuclease digests.—A survey of 12 geographically diverse collections of pearl millet showed no indication of chloroplast DNA sequence polymorphism, despite moderate levels of nuclear-encoded enzyme polymorphism. Interspecific and intergeneric differences were found for restriction endonuclease sites in both the small and the large single-copy regions of the chloroplast genome. The reverse repeat structure showed identical restriction site distributions in all materials surveyed. These results suggest that the reverse repeat region is differentially conserved during the evolution of the chloroplast genome.  相似文献   

11.
This paper presents phylogenies of the small but ecologically and horticulturally important Australian genus Correa (Rutaceae). Consensus phylogenies generated using parsimony were congruent with their counterparts generated by Bayesian analysis, although usually less well resolved. The phylogeny generated from the second internal transcribed spacer region of the nuclear ribosomal DNA supported the monophyly of Correa and identified two well supported clades (one comprising C. lawrenceana and C. baeuerlenii and the other containing all other species of the genus). Phylogenetic reconstructions based on the combined trnL-trnF spacer and the trnK intron (including the matK gene) regions of chloroplast DNA also supported the monophyly of Correa and of the C. lawrenceana/C. baeuerlenii clade, but the topology among the other species differed markedly from that in the ITS-based phylogeny. The major clades identified in the chloroplast phylogenies seemed to follow geographic patterns rather than species boundaries, with different samples of C. glabra bearing chloroplast genotypes from different clades. These patterns are likely to be because of independent evolution of the chloroplast and nuclear genomes, and are typical of cases of introgressive hybridisation among species or incomplete lineage sorting of chloroplast genomes leading to incongruence between chloroplast and nuclear phylogenies. Thus, the phylogenies based on nuclear DNA should reflect species relations better than the chloroplast phylogeny in Correa, and we propose a new subgeneric classification of the genus on the basis of the ITS-based phylogeny and morphology. Correa subgenus Persistens Othman, Duretto and G.J. Jord., containing C. lawrenceana and C. baeuerlenii, is formally described.  相似文献   

12.
Euglena gracilis Chloroplast DNA Codes for Polyadenylated RNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Polyadenylated RNA, isolated from total cellular RNA of photoautotrophically grown Euglena gracilis, comprised 2.1% of the total cellular RNA and contained 6.2% polyadenylic acid. Polyadenylated RNA, labeled in vitro with 125I, hybridized at saturating levels to an average 7.7% of the chloroplast DNA. In the presence of excess chloroplast rRNA, hybridization of polyadenylated RNA was reduced, but was still observed at a level corresponding to 2.8% of the chloroplast DNA. Polyadenylic acid was not detected in mRNA prepared from chloroplast polyribosomes, indicating a level of less than 0.1% polyadenylic acid in mature chloroplast mRNA. Of the total RNA isolated from cytoplasmic polyribosomes, 2.0% contained polyadenylic acid. This latter polyadenylated RNA did not hybridize to chloroplast DNA.  相似文献   

13.
Crystalline fraction 1 protein, obtained from four species of Nicotiana, have identical polypeptide compositions and isoelectric points. However, the tryptic peptide map of the large subunit of this protein from N. knightiana and N. paniculata differs from that of N. tomentosa and N. tomentosiformis. Since the large subunits of fraction 1 protein are coded by chloroplast DNA, the difference in their primary structure reflects the structural changes of the chloroplast genes containing the coding information. This indicates that the rate of mutation of chloroplast DNA seems to be higher than predicated from the analysis of isoelectric points of this protein.  相似文献   

14.
The chloroplast DNA of Chlamydomonas reinhardii has been examined by restriction endonuclease analysis. EcoRI, BamHI and BglII produce 30, 17 and 12 fragments, respectively, whose sites have been determined by electron microscopy and by comparative gel electrophoresis. These fragments have been ordered into a circular map which corresponds to a genome size of Mr = 126 × 106. The map was established by comparing the double digests of individual restriction fragments and by hybridizing purified labelled fragments to restriction enzyme digests of chloroplast DNA. The restriction fragments were isolated by molecular cloning or by preparative agarose gel electrophoresis.The two sets of chloroplast ribosomal RNA genes are contained within two inverted repeats of 13 × 106 molecular weight, which are located nearly at opposite sides of the map. In addition, the mapping studies have revealed the presence of short repeated base sequences which are interspersed throughout the chloroplast genome.  相似文献   

15.
The kinetic complexity of chloroplast DNA isolated from the chromophytic alga Olisthodiscus luteus has been determined. Using optical reassociation techniques, it was shown that the plastid DNA of this alga reacted as a single component with a second order rate constant of 4.1 molar−1 and second−1 (Cot½ 0.24 molar second) under conditions equivalent to 180 millimolar Na+ and 60°C. Given the 92 × 105 dalton complexity calculated for this chloroplast genome, an Olisthodiscus cell contains 650 plastome copies. Although this complement remains constant throughout the growth cycle of the organism, the ploidy level of an individual chloroplast shows significant plasticity and is dependent upon the number of chloroplasts present per cell. Experiments with the DNA fluorochrome Hoechst dye 33258 (bisbenzimide) demonstrate that plastids isolated from all phases of cell growth each possess a ring-shaped nucleoid containing detectable DNA. Olisthodiscus chloroplast DNA showed no sequence mismatch when thermal denaturation profiles of reassociated chloroplast DNA were examined, thus all plastome copies are essentially identical. Finally, reassociation studies demonstrated that no foldback (short inverted repeat) sequences were present in the plastid genome although significant hairpin loop structures were observed in control nuclear DNA samples.  相似文献   

16.
Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.  相似文献   

17.
The transmission of two non-Mendelian drug resistance markers has been studied in crosses of Chlamydomonas reinhardtii involving diploids and aneuploids with different mating type genotypes. Under normal laboratory conditions for gametogenesis, mating and zygote maturation, the transmission pattern of the non-Mendelian markers sr-u-1 (resistance to streptomycin) and spr-u-1-27-3 (resistance to spectinomycin) is primarily determined by the mating type genotypes of the parental cells. Our results confirm and expand an earlier observation suggesting that an apparent codominant function of the female (mt+) allele in regulating chloroplast gene transmission in meiosis appears to be distinct and separate from its recessive function in regulating mating behavior. The chloroplast DNA complement (as indexed by the number of extranuclear DNA-containing bodies) may exert a secondary effect on the transmission of these markers. Within a mating type group (mt+/mt- or mt-/mt-) a cell line with more chloroplast DNA tended to transmit its non-Mendelian markers more frequently than a cell line with less chloroplast DNA.  相似文献   

18.
Murai K  Tsunewaki K 《Genetics》1987,116(4):613-621
The genus Avena contains five different chloroplast genomes, I-V. A physical map of chloroplast (ct) DNA of Avena sativa (type I chloroplast genome) was constructed using three restriction endonucleases, PstI, SalI and SmaI. This genome is ca. 135.5 kbp in size, and contains two inverted repeats of ca. 22.5 kbp each, separated by a large (ca. 79.0 kbp) and small (ca. 12.5 kbp) single copy region. The rbcL gene which codes for the large subunit of ribulose 1,5-bisphosphate carboxylase, was located in the map. Restriction fragment patterns of all five chloroplast genomes were compared, and among them five fragment size and five restriction site mutations were disclosed. Four site mutations were found in two or more chloroplast genomes, the other site and five fragment size mutations were specific to one or another of the chloroplast genomes. A dendrogram showing phylogenetic relationships among the five chloroplast genomes, based on the distribution of the common and specific mutations among them, indicates that chloroplast genome divergence characterized by three restriction site mutations occurred first between two diploid groups, each carrying A and C genome (nuclear), respectively, followed by further speciation in each group.  相似文献   

19.
The cellular distribution of thymidine kinase activities in Chlamydomonas reinhardtii, as manifested by the in vivo incorporation of exogenous thymidine and 5-bromodeoxyuridine into different DNA species, appeared to be organelle specific and varied with different developmental stages in the life cycle of this organism. During vegetative growth and gametogenic differentiation, thymidine and 5-bromodeoxyuridine were shown to be selectively incorporated into chloroplast but not nuclear DNA. On the other hand, during zygotic germination in which meiosis occurs and the ensuing vegetative divisions of meiotic products, thymidine as well as 5-bromodeoxyuridine were incorporated into both nuclear and chloroplast DNA. These results suggest that, in addition to the thymidine kinase activity that is constantly present in the chloroplast, a cytoplasmic thymidine kinase is derepressed only during the sexual reproductive cycle of C. reinhardtii.  相似文献   

20.
Ribosomal RNA cistrons in Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena gracilis chloroplasts contain about 12 fg DNA of average density 1.686 g cm?3 and 1.7 pg RNA. The large (1.1 × 106 mol. wt) and small (0.56 × 106 mol. wt) ribosomal RNA components are coded for by separate cistrons, both of which band at a density of 1.696 g cm?3 in a CsCl gradient. About 6% of the chloroplast DNA codes for rRNA indicating that there are 240 cistrons for rRNA in each chloroplast or about three to six cistrons per chloroplast genome. Similar studies with rRNA from cytoplasmic ribosomes indicate that the cistrons for cytoplasmic rRNA band at a density of 1.716 g cm?3, denser than that of the main-band DNA, and that there are 1000 cistrons for cytoplasmic rRNA per cell. Fractionation of E. gracilis DNA on CsCl gradients and subsequent hybridization experiments, as well as melting curves of DNA-RNA hybrids, show that chloroplast rRNA does not anneal specifically with either the cistrons for cytoplasmic rRNA or any DNA in the dark-grown cell, in contrast to those results found in some higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号