首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.  相似文献   

2.
3.
4.
Hepatic stellate cells (HSC) coordinate the liver wound-healing response through secretion of several cytokines and chemokines, including CCL2 (formerly known as monocyte chemoattractant protein-1). In this study, we evaluated the role of different proteins of the MAPK family (ERK, p38(MAPK), and JNK) in the regulation of CCL2 expression by HSC, as an index of their proinflammatory activity. Several mediators activated all three MAPK, including TNF, IL-1, and PDGF. To assess the relative role of the different MAPKs, specific pharmacological inhibitors were used; namely, SB203580 (p38(MAPK)), SP600125 (JNK), and PD98059 (MEK/ERK). The efficacy and specificity of the different inhibitors in our cellular system were verified analyzing the enzymatic activity of the different MAPKs using in vitro kinase assays and/or testing the inhibition of phosphorylation of downstream substrates. SB203580 and SP600125 dose-dependently inhibited CCL2 secretion and gene expression induced by IL-1 or TNF. In contrast, inhibition of ERK did not affect the upregulation of CCL2 induced by the two cytokines. Finally, activin A was also found to stimulate CCL2 expression and to activate ERK, JNK, p38, and their downstream targets. Unlike in cells exposed to proinflammatory cytokines, all three MAPKs were required to induce CCL2 secretion in response to activin. We conclude that members of the MAPK family differentially regulate cytokine-induced chemokine expression in human HSC.  相似文献   

5.
6.
7.
8.
The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 -/- mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 -/- mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 -/- mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia.  相似文献   

9.
10.
IL-6 induces NF-kappa B activation in the intestinal epithelia   总被引:8,自引:0,他引:8  
IL-6 is a potent proinflammatory cytokine that has been shown to play an important role in the pathogenesis of inflammatory bowel disease (IBD). It is classically known to activate gene expression via the STAT-3 pathway. Given the crucial role of IL-6 in the pathogenesis of chronic intestinal inflammation, it is not known whether IL-6 activates NF-kappaB, a central mediator of intestinal inflammation. The model intestinal epithelial cell line, Caco2-BBE, was used to study IL-6 signaling and to analyze whether suppressor of cytokine signaling 3 (SOCS-3) proteins play a role in the negative regulation of IL-6 signaling. We show that IL-6 receptors are present in intestinal epithelia in a polarized fashion. Basolateral IL-6 and, to a lesser extent, apical IL-6 induces the activation of the NF-kappaB pathway. Basolateral IL-6 stimulation results in a maximal induction of NF-kappaB activation and NF-kappaB nuclear translocation at 2 h. IL-6 induces polarized expression of ICAM-1, an adhesion molecule shown to be important in the neutrophil-epithelial interactions in IBD. Using various deletion constructs of ICAM-1 promoter, we show that ICAM-1 induction by IL-6 requires the activation of NF-kappaB. We also demonstrate that overexpression of SOCS-3, a protein known to inhibit STAT activation in response to IL-6, down-regulates IL-6-induced NF-kappaB activation and ICAM-1 expression. In summary, we demonstrate the activation of NF-kappaB by IL-6 in intestinal epithelia and the down-regulation of NF-kappaB induction by SOCS-3. These data may have mechanistic and therapeutic implications in diseases such as IBD and rheumatoid arthritis in which IL-6 plays an important role in the pathogenesis.  相似文献   

11.
12.
13.
14.
Airways display robust NF-kappaB activation and represent targets for anti-inflammatory asthma therapies, but the functional importance of NF-kappaB activation in airway epithelium remains enigmatic. Therefore, transgenic mice were created in which NF-kappaB activation is repressed specifically in airways (CC10-IkappaBalpha(SR) mice). In response to inhaled Ag, transgenic mice demonstrated significantly ameliorated inflammation, reduced levels of chemokines, T cell cytokines, mucus cell metaplasia, and circulating IgE compared with littermate controls. Despite these findings, Ag-driven airways hyperresponsiveness was not attenuated in CC10-IkappaBalpha(SR) mice. This study clearly demonstrates that airway epithelial NF-kappaB activation orchestrates Ag-induced inflammation and subsequent adaptive immune responses, but does not contribute to airways hyperresponsiveness, the cardinal feature that underlies asthma.  相似文献   

15.
The Rel/NF-kappa B family: friend and foe   总被引:21,自引:0,他引:21  
  相似文献   

16.
17.
18.
19.
The alveolar macrophage is an important source of interleukin (IL)-8 during pulmonary injury. The IL-8 gene promoter sequence contains nuclear factor (NF)-kappa B, NF-IL6, and activator protein (AP)-1 binding sequences. These sites may have differing regulatory roles in hyperoxia-exposed macrophages than in those stimulated by bacterial lipopolysaccharide (LPS). U-937 and THP-1 macrophage-like cells were exposed to air-5% CO2 or 95% O2-5% CO2, with or without 1.0 microg/ml of LPS, and transfected with an IL-8 promoter-reporter containing NF-kappa B, NF-IL6, or AP-1 mutations. Hyperoxia and LPS caused additive increases in IL-8 production by U-937 cells, whereas THP-1 cells responded only to LPS. An NF-kappa B mutation ablated baseline and O2- and LPS-stimulated reporter activity in both cell lines, whereas NF-IL6 mutations had little effect. An AP-1 mutation had an intermediate effect. LPS, but not hyperoxia, stimulated nuclear translocation of NF-kappa B in both cell lines. Pharmacological blockade of NF-kappa B nuclear translocation ablated LPS-, but not hyperoxia-, stimulated IL-8 production. Although an intact promoter NF-kappa B site is crucial to macrophage IL-8 production, only LPS-stimulated production appears to require additional nuclear translocation of NF-kappa B.  相似文献   

20.
Although airway epithelial cells provide important barrier and host defense functions, a crucial role for these cells in development of acute lung inflammation and injury has not been elucidated. We investigated whether NF-kappaB pathway signaling in airway epithelium could decisively impact inflammatory phenotypes in the lungs by using a tetracycline-inducible system to achieve selective NF-kappaB activation or inhibition in vivo. In transgenic mice that express a constitutively active form of IkappaB kinase 2 under control of the epithelial-specific CC10 promoter, treatment with doxycycline induced NF-kappaB activation with consequent production of a variety of proinflammatory cytokines, high-protein pulmonary edema, and neutrophilic lung inflammation. Continued treatment with doxycycline caused progressive lung injury and hypoxemia with a high mortality rate. In contrast, inducible expression of a dominant inhibitor of NF-kappaB in airway epithelium prevented lung inflammation and injury resulting from expression of constitutively active form of IkappaB kinase 2 or Escherichia coli LPS delivered directly to the airways or systemically via an osmotic pump implanted in the peritoneal cavity. Our findings indicate that the NF-kappaB pathway in airway epithelial cells is critical for generation of lung inflammation and injury in response to local and systemic stimuli; therefore, targeting inflammatory pathways in airway epithelium could prove to be an effective therapeutic strategy for inflammatory lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号