首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-(phosphonomethyl)glycine (glyphosate) resistance was previously reported in a horseweed [Conyza (=Erigeron) canadensis (L.) Cronq.] population from Houston, DE (P 0 R ). Recurrent selection was performed on P 0 R , since the population was composed of susceptible (5%) and resistant (95%) phenotypes. After two cycles of selection at 2.0 kg ae glyphosate ha–1, similar glyphosate rates that reduced plant growth by 50%, glyphosate rates that inflicted 50% mortality in the population, and accumulations of half of the maximum detectable shikimic acid concentration were observed between the parental P 0 R and the first (RS1) and second (RS2) recurrent generations. In addition, RS1 and RS2 did not segregate for resistance to glyphosate. This suggested that the RS2 population comprised a near-homozygous, glyphosate-resistant line. Whole-plant rate responses estimated a fourfold resistance increase to glyphosate between RS2 and either a pristine Ames, IA (P 0 P ) or a susceptible C. canadensis population from Georgetown, DE (P 0 S ). The genetics of glyphosate resistance in C. canadensis was investigated by performing reciprocal crosses between RS2 and either the P 0 P or P 0 S populations. Evaluations of the first (F1) and second (F2) filial generations suggested that glyphosate resistance was governed by an incompletely dominant, single-locus gene (R allele) located in the nuclear genome. The proposed genetic model was confirmed by back-crosses of the F1 to plants that arose from achenes of the original RS2, P 0 P , or P 0 S parents. The autogamous nature of C. canadensis, the simple inheritance model of glyphosate resistance, and the fact that heterozygous genotypes (F1) survived glyphosate rates well above those recommended by the manufacturer, predicted a rapid increase in frequency of the R allele under continuous glyphosate selection. The impact of genetics on C. canadensis resistance management is discussed.  相似文献   

2.
Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate‐susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2 GS populations of C. canadensis in agrestal and ruderal habitats. We found that geographic location was an important factor in the occurrence of GR C. canadensis in field margins. Although not consistently associated with either glyphosate resistance or glyphosate susceptibility, there were differences in phenology, survivorship, and herbivory among biotypes of C. canadensis. We found equal or greater fitness in GR biotypes, compared to GS biotypes, and GR plants were present in field margins. Field margins or ruderal habitats may provide refugia for GR C. canadensis, allowing reproduction and further selection to occur as seeds recolonize the agrestal habitat. Agricultural practices may select for ecological changes that feed back into the evolution of plants in ruderal habitats.  相似文献   

3.
Horseweed (Conyza canadensis) is a problem weed in crop production because of its evolved resistance to glyphosate and other herbicides. Although horseweed is mainly self-pollinating, glyphosate-resistant (GR) horseweed can pollinate glyphosate-susceptible (GS) horseweed. To the best of our knowledge, however, there are no available data on horseweed pollen production, dispersion, and deposition relative to gene flow and the evolution of resistance. To help fill this knowledge gap, a 43-day field study was performed in Champaign, Illinois, USA in 2013 to characterize horseweed atmospheric pollen emission, dispersion, and deposition. Pollen concentration and deposition, coupled with atmospheric data, were measured in a source field (180 m by 46 m) and its surrounding areas up to 1 km downwind horizontally and up to 100 m vertically. The source strength (emission rate) ranged from 0 to 140 pollen grains per plant per second (1170 to 2.1×106 per plant per day). For the life of the study, the estimated number of pollen grains generated from this source field was 10.5×1010 (2.3×106 per plant). The release of horseweed pollen was not strongly correlated to meteorological data and may be mainly determined by horseweed physiology. Horseweed pollen reached heights of 80 to100 m, making long-distance transport possible. Normalized (by source data) pollen deposition with distance followed a negative-power exponential curve. Normalized pollen deposition was 2.5% even at 480 m downwind from the source edge. Correlation analysis showed that close to or inside the source field at lower heights (≤3 m) vertical transport was related to vertical wind speed, while horizontal pollen transport was related to horizontal wind speed. High relative humidity prevented pollen transport at greater heights (3–100 m) and longer distances (0–1000 m) from the source. This study can contribute to the understanding of how herbicide-resistance weeds or invasive plants affect ecology through wind-mediated pollination and invasion.  相似文献   

4.
Inheritance of resistance to the anti-microtubule dinitroaniline herbicides was investigated in a goosegrass biotype displaying an intermediate level of resistance (I). Reciprocal crosses were made between the I biotype and previously characterized susceptible (S) or resistant (R) biotypes. Eight F1 hybrids were identified, and F2 populations were produced by selfing. The dinitroaniline-herbicide response phenotype (DRP) of F1 plants, and F2 seedlings was determined using a root-growth bioassay. The DRP of F1 plants of S × I was “susceptible” (i.e., identical to the S parental plants), and the DRP of F1 plants of I × R was “intermediate” (i.e., identical to the I parental plants). Nonparental phenotypes were not observed in F1 plants. Results indicated susceptibility to be dominant over intermediate resistance and intermediate resistance to be dominant over high resistance. Analysis of reciprocal crosses ruled out any role for cytoplasmic inheritance. When treated at the discriminating concentration (e.g., 0.28 ppm oryzalin), F2 seedlings of S × I were classified as either S or I phenotype, and F2 seedlings of I × R were classified as either I or R phenotype. Again, nonparental phenotypes were not observed. The 3:1 (S:I or I:R) segregation ratios in F2 seedlings were consistent across all eight F2 families. The results show that dinitroaniline herbicide resistance in the I biotype of goosegrass is inherited as a single, nuclear gene. Furthermore, it suggests that dinitroaniline resistance in goosegrass is controlled by three alleles at a single locus (i.e., Drp-S, Drp-i, and Drp-r).  相似文献   

5.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

6.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

7.
It is possible to monitor the movement of transgenes by tagging them with green fluorescent protein (GFP). In order to develop a model to study transgene flow, canola (Brassica napus cv Westar) was transformed with two GFP constructs, mGFP5er (GFP only) and pSAM 12 [GFP linked to a synthetic Bacillus thuringiensis (Bt) cry1Ac endotoxin gene]. Transformed callus sectors that fluoresced green were preferentially selected in the tissue culture process. Four independent GFP canola events and 12 events of GFP/Bt canola were regenerated through tissue culture. GFP fluorescence was macroscopically detectable throughout the entire life cycle of canola. The GFP/Bt events were insecticidal to neonate corn earworm (Helicoverpa zea) larvae and prevented herbivory damage. Fluorescence intensity at 508 nm varied between the independent transformation events, and ranged from 7.6×105 to 13.8×105 (counts per second) in contrast with the wild-type at 5.3×105 cps. Nine GFP/Bt and three GFP events were hybridized with three wild accessions of B. rapa. The resultant hybrids fluoresced green and were insecticidal to neonate corn earworm larvae to the same degree as the transgenic canola parents. However, fluorescence intensities of the hemizygous F1 hybrid lines were lower than the respective original homozygous canola parents. Each F1 hybrid line was backcrossed by hand onto the B. rapa parent, and transgenic backcrosses were produced at rates ranging from 15% to 34%. These data suggest that GFP can be used as a tool to monitor transgene flow from crop species to wild relatives. Received: 11 September 2000 / Accepted: 1 February 2001  相似文献   

8.
Glyphosate‐resistant (GR) crops have been adopted on a massive scale by North and South American farmers. Currently, about 80% of the 120 million hectares of the global genetically modified (GM) crops are GR crop varieties. However, the adoption of GR plants in China has not occurred at the same pace, owing to several factors including, among other things, labour markets and the residual effects of glyphosate in transgenic plants. Here, we report the co‐expression of codon‐optimized forms of GR79 EPSPS and N‐acetyltransferase (GAT) genes in cotton. We found five times more resistance to glyphosate with 10‐fold reduction in glyphosate residues in two pGR79 EPSPSpGAT co‐expression cotton lines, GGCO2 and GGCO5. The GGCO2 line was used in a hybridization programme to develop new GR cottons. Field trials at five locations during three growing seasons showed that pGR79pGAT transgenic cotton lines have the same agronomic performance as conventional varieties, but were USD 390‐495 cheaper to produce per hectare because of the high cost of conventional weed management practices. Our strategy to pyramid these genes clearly worked and thus offers attractive promise for the engineering and breeding of highly resistant low‐glyphosate‐residue cotton varieties.  相似文献   

9.
Strong selection from herbicides has led to the rapid evolution of herbicide‐resistant weeds, greatly complicating weed management efforts worldwide. In particular, overreliance on glyphosate, the active ingredient in RoundUp®, has spurred the evolution of resistance to this herbicide in ≥40 species. Previously, we reported that Conyza canadensis (horseweed) has evolved extreme resistance to glyphosate, surviving at 40× the original 1× effective dosage. Here, we tested for underlying fitness effects of glyphosate resistance to better understand whether resistance could persist indefinitely in this self‐pollinating, annual weed. We sampled seeds from a single maternal plant (“biotype”) at each of 26 horseweed populations in Iowa, representing nine susceptible biotypes (S), eight with low‐level resistance (LR), and nine with extreme resistance (ER). In 2016 and 2017, we compared early growth rates and bolting dates of these biotypes in common garden experiments at two sites near Ames, Iowa. Nested ANOVAs showed that, as a group, ER biotypes attained similar or larger rosette size after 6 weeks compared to S or LR biotypes, which were similar to each other in size. Also, ER biotypes bolted 1–2 weeks earlier than S or LR biotypes. These fitness‐related traits also varied among biotypes within the same resistance category, and time to bolting was inversely correlated with rosette size across all biotypes. Disease symptoms affected 40% of all plants in 2016 and 78% in 2017, so we did not attempt to measure lifetime fecundity. In both years, the frequency of disease symptoms was greatest in S biotypes and similar in LR versus ER biotypes. Overall, our findings indicate there are no early growth penalty and possibly no lifetime fitness penalty associated with glyphosate resistance, including extremely strong resistance. We conclude that glyphosate resistance is likely to persist in horseweed populations, with or without continued selection pressure from exposure to glyphosate.  相似文献   

10.
Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T0 seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.  相似文献   

11.
The mode of action of paraquat (1,1-dimethyl-4,4-bipyridinium) and the mechanism of resistance to it were studied in leaves of atrazine/paraquat co-resistant (R) and susceptible (S) biotypes of horseweed (Conyza canadensis) collected from Hungarian vineyards. The application of 0·5 mol m?3 paraquat by spraying onto the surface of the leaves of intact plants in the light rapidly led to typical symptoms of paraquat action in the initial period in both biotypes, i.e. inhibition of CO2 fixation, suppression of variable chlorophyll fluorescence (Fv), decrease of oxygen evolution and stimulation of ethane production. The inhibitory effect of paraquat in the S plants was irreversible, whereas it was transient in the R plants and those plants recovered gradually afterwards. The R plants recovered from the inhibitory effect of paraquat only in the light, and an increase in light intensity was found to have a pronounced effect on the recovery of Fv. The mechanism of resistance to paraquat in C. canadensis is discussed.  相似文献   

12.
The parasitic plant Cuscuta campestris is dependent on its host for water, assimilates and amino acids. It can be controlled by the herbicide glyphosate, which inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), resulting in shikimate accumulation. In this study, C. campestris was parasitic on transgenic tobacco plants expressing green fluorescent protein (GFP) in the phloem. Changes in [14C]sucrose and GFP accumulation in the parasite were used as indicators of the herbicides effect on translocation between the host and parasite. Host plants were treated with glyphosate 22 days after sowing. Shikimate accumulation in the parasite 1 day after glyphosate treatment (DAGT) confirmed EPSPS inhibition in C. campestris. No damage was visible in the host plants for the first 3 DAGT, while during that same time, a significant reduction in [14C]sucrose and GFP accumulation was observed in the parasite. Thus, we propose that the parallel reduction in GFP and sucrose accumulation in C. campestris is a result of a glyphosate effect on the parasites ability to withdraw assimilates from the host.Abbreviations CLSM Confocal laser-scanning microscope - DAGT Days after glyphosate treatment - DAS Days after sowing - EPSPS 5-Enolpyruvylshikimate-3-phosphate synthase - GFP Green fluorescent protein  相似文献   

13.
Molecular genetic studies on the model plant Arabidopsis thaliana often involve multiple rounds of Agrobacterium-mediated transformation. Such procedures require multiple marker genes that would allow for efficient selection of transgenic plants in each cycle of transformation. Here, we report on a selection marker cassette based on a codon-modified glyphosate N-acetyltransferase (GAT) gene whose expression is driven by a powerful EL2Ω promoter. After introduction of the GAT expression cassette into A. thaliana via Agrobacterium-mediated transformation, glyphosate-resistant primary transformants are efficiently selected by glyphosate, either added to the culture medium or by spraying a glyphosate solution onto seedlings grown in soil. Robust glyphosate-resistant phenotypes are always associated with the presence of the GAT cassette. In addition, RT-PCR analysis of T2 transformants has demonstrated that resistance to glyphosate is associated with higher levels of GAT expression. Resistance conferred by GAT is specific to glyphosate and not to other commonly used selection chemical compounds. These results demonstrate the versatility of the GAT cassette suitable for both large-scale, soil-based selection system of transgenic plants as well as their characterization in vitro.  相似文献   

14.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

15.
Gene flow from transgenic oilseed rape (BRASSICA NAPUS) might not be avoidable, thus, it is important to detect and quantify hybridization events with its relatives in real time. Data are presented showing the correlation between genetically linked green fluorescent protein (GFP) with BACILLUS THURINGIENSIS (Bt) CRY1AC gene expression in hybrids formed between transgenic B. NAPUS "Westar" and a wild Chinese accession of wild mustard (B. JUNCEA) and hybridization between transgenic B. NAPUS and a conspecific Chinese landrace oilseed rape. Hybrids were obtained either by spontaneous hybridization in the field or by hand-crossing in a greenhouse. In all cases, transgenic hybrids were selected by GFP fluorescence among seedlings originating from seeds harvested from B. JUNCEA and the Chinese oilseed rape plants. Transgenicity was confirmed by PCR detection of transgenes. GFP fluorescence was easily and rapidly detected in the hybrids under greenhouse and field conditions. Results showed that both GFP fluorescence and Bt protein synthesis decreased as either plant or leaf aged, and GFP fluorescence intensity was closely correlated with Bt protein concentration during the entire vegetative lifetime in hybrids. These findings allow the use of GFP fluorescence as an accurate tool to detect gene-flow in time in the field and to conveniently estimate BT CRY1AC expression in hybrids on-the-plant.  相似文献   

16.
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR–green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense‐ and antisense‐ LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild‐type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H2O2), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (Pn), higher maximal photochemical efficiency of PSII (Fv/Fm) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H2O2 level, higher ascorbate peroxidase (APX) activity, greater Pn and Fv/Fm under methyl viologen (MV)‐mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.  相似文献   

17.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

18.
Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.  相似文献   

19.
To study and induce meiotic recombination in plants, we generated and analyzed transgenic tomato hybrids F1-RecA and F1-NLS-recA-LicBM3 expressing, respectively, the recA gene of Escherichia coli and the NLS-recA-licBM3 gene. It was found that the recA and NLS-recA-licBM3 genes are inherited through the maternal and paternal lineages, they have no selective influence on the pollen and are contained in tomato F1-RecA and F1-NLS-RecA-LicBM3 hybrids outside the second chromosome in the hemizygous state. The comparative analysis of the meiotic recombination frequency (rf) in the progenies of the transgenic and nontransgenic hybrids showed that only the expression of the recA gene of E. coli in cells of the F1-RecA plants produced a 1.2–1.5-fold increase in the frequency of recombination between some linked marker genes of the second chromosome of tomato.  相似文献   

20.
To develop an efficient protocol for the transformation of the legume Astragalus sinicus (Chinese milk vetch), cotyledon segments were infected with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pBINm-gfp5-ER which carries the gfp5 gene encoding green fluorescent protein and the kanamycin (Km) resistance gene nptII. The infected explants were cultured on shoot regeneration (SR) medium containing 1.0 mg l–1 -naphthaleneacetic acid (NAA) and 1.0 mg l–1 thidiazuron (TDZ). Putative transformed shoots were selected on SR medium containing 75 g ml–1 Km, 200 g ml–1 Timentin, and transformation was monitored by observation of GFP expression under a dissecting fluorescence microscope with appropriate filters. The identification of GFP-expressing shoots or callus in combination with Km selection allowed the visual selection of growing transgenic cells and shoots with no escapes. Plants were regenerated from seven independent transgenic events and five plants have set seed. GFP expression segregated in the T1 seedlings of the two lines tested in a 3 – 1 ratio. In addition to the GFP expression of the transgenic plants, the transgenic nature of individual plants was confirmed by Southern and Western blot analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号