共查询到20条相似文献,搜索用时 15 毫秒
1.
A β-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high β-galactosidase activity but utilized lactose only slightly faster than the recipient. β-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the β-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial β-galactosidase, even though β-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-β-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-β-galactosidase activity. We suggest that β-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-β-galactosidase genes. 相似文献
2.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome. 相似文献
3.
Expression and nucleotide sequence of the Clostridium acetobutylicum beta-galactosidase gene cloned in Escherichia coli. 总被引:1,自引:2,他引:1 下载免费PDF全文
K R Hancock E Rockman C A Young L Pearce I S Maddox D B Scott 《Journal of bacteriology》1991,173(10):3084-3095
A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli. 相似文献
4.
Godon JJ Delorme C Ehrlich SD Renault P 《Applied and environmental microbiology》1992,58(12):4045-4047
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities. 相似文献
5.
6.
7.
8.
V. Monnet W. Bockelmann J. C. Gripon M. Teuber 《Applied microbiology and biotechnology》1989,31(2):112-118
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic. 相似文献
9.
W. Bockelmann V. Monnet A. Geis M. Teuber J. C. Gripon 《Applied microbiology and biotechnology》1989,31(3):278-282
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris. 相似文献
10.
S Garde M Babin P Gaya M Nu?ez M Medina 《Applied and environmental microbiology》1999,65(11):5151-5153
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment. 相似文献
11.
12.
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases. 相似文献
13.
14.
Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363 总被引:14,自引:0,他引:14
We have cloned usp45, a gene encoding an extracellular secretory protein of Lactococcus lactis subsp. lactis strain MG1363. Unidentified secreted 45-kDa protein (Usp45) is secreted by every mesophilic L. lactis strain we tested so far and it is chromosomally encoded. The nucleotide sequence of the usp45 gene revealed an open reading frame of 1383 bp encoding a protein of 461 amino acids (aa), composed of a 27-aa signal peptide and a mature protein initiated at Asp28. The gene contains a consensus promoter sequence and a weak ribosome-binding site; the latter is rather uncommon for Gram-positive bacteria. Expression studies in Escherichia coli showed efficient synthesis and secretion of the protein. Usp45 has an unusual aa composition and distribution, and it is predicted to be structurally homologous with P54 of Enterococcus faecium. Up to now, no biological activity could be postulated for this secreted protein. 相似文献
15.
Isolation and characterization of nisin-producing Lactococcus lactis subsp. lactis from bean-sprouts 总被引:5,自引:0,他引:5
Bacterial isolates from bean-sprouts were screened for anti- Listeria monocytogenes bacteriocins using a well diffusion method. Thirty-four of 72 isolates inhibited the growth of L.monocytogenes Scott A. One, HPB 1688, which had the biggest inhibition zone against L.monocytogenes Scott A, was selected for subsequent analysis. Both ribotyping and DNAsequencing of 16S ribosomal RNA gene demonstrated that the isolate was Lactococcus lactis subsp. lactis . Polymerase chain reaction and nucleotide sequencing revealed that thegenomic DNA of the bean-sprout isolates contained a nisin Z structural gene. In MRS broth,bean-sprout isolate HPB 1688 survived at 3–4·5°C for at least 20 d, grew at 4°Cand produced anti-listerial compoundsat 5°C. When co-cultured with L. monocytogenes in MRS broth, the isolate inhibited thegrowth of L. monocytogenes at 4°C after 14d and at 10°C after 2 d. When co-inoculatedwith 102 cells g−1 of L.monocytogenes on fresh-cut ready-to-eat Caesar salad, L. lactis subsp. lactis (108 cells g−1 ) was able to reduce the number of L. monocytogenes by 1–1·4 logs after storage for 10 d at 7° and 10°C. A bacteriocin-producing Enterococcusfaecium was also able to reduce the numbers of L. monocytogenes onCaesar salad, butdid not act synergistically when co-inoculated with L. lactis subsp. lactis . 相似文献
16.
Ll.ltrB is a functional group II intron located within a gene (ltrB) encoding a conjugative relaxase essential for transfer of the lactococcal element pRSO1. In this work, the Ll.ltrB intron was shown to be an independent mobile element capable of inserting into an intronless allele of the ltrB gene. Ll.ltrB was not observed to insert into a deletion derivative of the ltrB gene in which the intron splice site was removed. In contrast, a second vector containing a 271-nucleotide segment of ltrB spanning the Ll.ltrB splice site was shown to be a proficient recipient of intron insertion. Efficient homing was observed in the absence of a functional host homologous recombination system. This work demonstrates that the Ll.ltrB intron is a novel site-specific mobile element in lactococci and that group II intron self-transfer is a mechanism for intron dissemination among bacteria. 相似文献
17.
Resistance to a broad class of isometric bacteriophages that infect strains of Lactococcus lactis has been engineered into a dairy starter by expression of antisense mRNA targeted against a conserved bacteriophage gene. Maximum protection is obtained only when the entire 1,654-bp coding sequence for a 51-kDa protein is positioned in the antisense orientation with respect to a promoter sequence that functions in L. lactis subsp. lactis. Expression of the antisense mRNA results in more than 99% reduction of the total number of PFU. Plaques that do form are characterized by their relatively small size and irregular shape. A variety of truncated genes, including the open reading frame expressed in the sense orientation, fail to provide any significant measure of resistance as compared with that of the intact open reading frame. Southern hybridization with probes specific for the conserved region reveal that the [ill] plasmid constructs are maintained despite the presence of a large complement of other indigenous plasmids. Strains harboring the antisense mRNA plasmid construct grow and produce acid at a rate equivalent to that of the host strain alone, suggesting that antisense expression is not deleterious to normal cellular metabolism. 相似文献
18.
Unlike other lactic acid bacteria, Lactococcus lactis subsp. lactis NCDO 2118 was able to grow in a medium lacking glutamate and the amino acids of the glutamate family. Growth in such a medium proceeded after a lag phase of about 2 days and with a reduced growth rate (0.11 h−1) compared to that in the reference medium containing glutamate (0.16 h−1). The enzymatic studies showed that a phosphoenolpyruvate carboxylase activity was present, while the malic enzyme and the enzymes of the glyoxylic shunt were not detected. As in most anaerobic bacteria, no α-ketoglutarate dehydrogenase activity could be detected, and the citric acid cycle was restricted to a reductive pathway leading to succinate formation and an oxidative branch enabling the synthesis of α-ketoglutarate. The metabolic bottleneck responsible for the limited growth rate was located in this latter pathway. As regards the synthesis of glutamate from α-ketoglutarate, no glutamate dehydrogenase was detected. While the glutamate synthase-glutamine synthetase system was detected at a low level, high transaminase activity was measured. The conversion of α-ketoglutarate to glutamate by the transaminase, the reverse of the normal physiological direction, operated with different amino acids as nitrogen donor. All of the enzymes assayed were shown to be constitutive. 相似文献
19.
Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris 总被引:2,自引:0,他引:2
Nomura M Kobayashi M Ohmomo S Okamoto T 《Applied and environmental microbiology》2000,66(5):2235-2237
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein. 相似文献
20.
Charlene E. Wolf-Hall William R. Gibbons Nichole A. Bauer 《World journal of microbiology & biotechnology》2009,25(11):2013-2019
The goal of this project was to develop a lower-cost medium for nisin production, so this bacteriocin could be used in a broader range of industrial fermentation processes. The objectives included: (1) evaluating methods for controlling the inhibitory effect of lactic acid produced during fermentation, and (2) comparing two inexpensive complex media for nisin production. Lactococcus lactis subsp. lactis was cultured in shake flasks on Laurel–Tryptose broth to evaluate a range of buffers for pH control. NaHCO3 proved to be an effective buffer for increasing nisin production. Subsequent trials then evaluated condensed corn soluble (CCS, a fuel ethanol production byproduct) and cheese whey as inexpensive growth media. CCS was shown to be an efficient, low-cost medium for high nisin titers and yields. These modifications reduced the medium costs for nisin production from $600/kg nisin (based on Laurel–Tryptose broth medium) to $35–40/kg nisin for the corn solubles medium. 相似文献