首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of the oxygen equilibrium of tadpole hemoglobin has been determined between 0 degrees and 32 degrees for the unfractionated but phosphate-free lysate and between 12 degrees and 32 degrees for each of the four isolated components between pH 6 and 10 in 0.05 M cacodylate, Tris, or glycine buffers containing 0.1 M NaCl and 1 mM EDTA. Under these conditions the Bohr effect (defined as deltalog p50/deltapH) of the unfractionated lysate is positive at low temperatures between pH 6 and 8.5 and is negative above pH 8.5 to 8.8 at any temperature. As the temperature rises the Bohr effect below pH 8.5 changes greatly. In the interval pH 7.0 to 7.5, the magnitude of the Bohr effect decreases from + 0.28 at 0 degrees to zero at about 24 degrees and becomes negative, as in mammalian hemoglobins, above this temperature. Measurements with the isolated components show that the temperature dependence of oxygen binding for Components I and II and for Components III and IV is very similar. For both sets of components the apparent overall enthalpy of oxygenation at pH 7.5 is about -16.4 kcal/mol and -12.6 kcal/mol at pH 9.5. The measured enthalpies include contributions from the active Bohr groups, the buffer ions themselves, the hemoglobin groups contributing buffering, and any pH-dependent, oxygenation-dependent binding of ions such as chloride by the hemoglobin. The apportioning of the total enthalpy among these various processes remains to be determined. Between pH 8 and 10.5 tadpole oxyhemoglobin undergoes a pH-dependent dissociation from tetramer to dimer. The pH dependence of the apparent tetramer-dimer dissociation constant indicates that at pH 9.5 the dissociation of each tetramer is accompanied by the release of approximately 2 protons. In this pH range the oxygen equilibrium measurements indicate that about 0.5 proton is released for each oxygen molecule bound. The results are consistent with the conclusion that one acid group per alphabeta dimer changes its pK from about 10 to 8 or below upon dissociation of the tetramer.  相似文献   

2.
The Sso10b (or Alba) family of proteins is a conserved group of archaeal and eukaryotic proteins which are thought to play a role in both chromatin organization and RNA metabolism. We describe here the solution structure and properties of Sso10b2 from Sulfolobus solfataricus. NMR data including residual dipolar couplings and (15)N relaxation data demonstrated that the protein adopts a beta(1)alpha(1)beta(2)alpha(2)beta(3)beta(4) topology with an IF-3-like fold. The protein dimerizes in solution at 30 degrees C via a hydrophobic surface defined by the C-terminal alpha(2)beta(3)beta(4) elements with a structure similar to one of the putative dimers indicated by previous crystal structures. DSC and circular dichroism data demonstrated an unusual two-state structural transition near the growth temperature which led to an increase in beta-sheet content without dissociation of the dimer. The cooperativity of the transition exceeded that of a dimer at pH 7, demonstrating the presence of higher order oligomers near the growth temperature at pH 7. Reverse titrations of Sso10b2 with nucleic acid showed that the protein binds single-stranded DNA (K(d) of 3 x 10(-)(7) M) with higher affinity than RNA (1.3 x 10(-)(6) M) or double-stranded DNA (1.5 x 10(-)(5) M) in 10 mM KH(2)PO(4) (pH 7.0, 20 degrees C). NMR chemical shift perturbation data indicated that single-stranded DNA and RNA binding occurred across the same dimer interface and encompassed a surface defined by the C-terminal ends of the beta(1), beta(2), and beta(3) strands of each monomer.  相似文献   

3.
We have examined the interaction of the Escherichia coli trp aporepressor with its ligand, L-tryptophan, using both equilibrium dialysis and flow dialysis methods. Results obtained by the two procedures were equivalent and indicate that the trp aporepressor binds L-tryptophan with an equilibrium dissociation constant (Kd) of 40 microM at 25 degrees C under standard binding assay conditions (10 mM potassium phosphate, pH 7.4, 0.2 M potassium chloride, 0.1 mM EDTA, 5% glycerol). Molecular sizing of the purified trp aporepressor shows that in the absence of ligand the regulatory protein exists as a dimeric species with greater than 99% purity and an apparent molecular weight of 30,000. Under the storage and assay conditions used, the dimer appears quite stable, and essentially no monomer or higher multimeric species are detected. Analysis of binding data by Scatchard and direct linear plot methods shows two identical and independent ligand-binding sites/native trp aporepressor dimer. When examined as a function of temperature, L-tryptophan binding by trp aporepressor varied over 7-fold (Kd = 28 microM at 6.5 degrees C to Kd = 217 microM at 40 degrees C). At the optimal growth temperature for E. coli (37 degrees C), the dissociation constant was 160 microM for the ligand, L-tryptophan. From the relationship between temperature and L-tryptophan binding by trp aporepressor, the apparent enthalpy change delta H = -10.6 +/- 0.6 kcal mol-1 and the apparent entropy change delta S = -17 +/- 2 cal degree-1 mol-1 were determined.  相似文献   

4.
The DNA binding properties of the Escherichia coli RecQ helicase   总被引:6,自引:0,他引:6  
The RecQ helicase family is highly conserved from bacteria to men and plays a conserved role in the preservation of genome integrity. Its deficiency in human cells leads to a marked genomic instability that is associated with premature aging and cancer. To determine the thermodynamic parameters for the interaction of Escherichia coli RecQ helicase with DNA, equilibrium binding studies have been performed using the thermodynamic rigorous fluorescence titration technique. Steady-state fluorescence anisotropy measurements of fluorescein-labeled oligonucleotides revealed that RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10 nucleotides. This stoichiometry was not altered in the presence of AMPPNP (adenosine 5'-(beta,gamma-imido) triphosphate) or ADP. Analyses of RecQ helicase interactions with oligonucleotides of different lengths over a wide range of pH, NaCl, and nucleic acid concentrations indicate that the RecQ helicase has a single strong DNA binding site with an association constant at 25 degrees C of K=6.7 +/- 0.95 x 10(6) M(-1) and a cooperativity parameter of omega=25.5 +/- 1.2. Both single-stranded DNA and double-stranded DNA bind competitively to the same site. The intrinsic affinities are salt-dependent, and the formation of DNA-helicase complex is accompanied by a net release of 3-4 ions. Allosteric effects of nucleotide cofactors on RecQ binding to DNA were observed only for single-stranded DNA in the presence of 1.5 mM AMPPNP, whereas both AMPPNP and ADP had no detectable effect on double-stranded DNA binding over a large range of nucleotide cofactor concentrations.  相似文献   

5.
The technique of proton release measurement has been used to explore the binding of ADP to skeletal and cardiac myosins and their active fragments in a variety of conditions. It has proved possible to obtain binding profiles on intact myosin in the filamentous, undissolved form in physiological solvent conditions. Binding constants are given. At higher ionic strength (0.5 M potassium chloride) the binding profile of magnesium-ADP. is compatible with the presence of two types of site, differing from one another both in respect of affinity and the number of protons released per site. Studies with cardiac myosin reveal no such indications of heterogeneity, and are consistent with the presence of a single population of thermodynamically indistinguishable sites. In the absence of divalent cations, in solutions containing potassium ions and EDTA, ADP binds with absorption rather than liberation of protons. The pH profile of proton absorption at saturation can be fitted in terms of an ionising group with an unperturbed pK of 9.4, and at least one of lower pK(5.9). The dissociation constant (pH8 at 5 degrees C) is about 8 microM, and the affinity for uncomplexed ADP is thus only slightly weaker than that for magnesium-ADP  相似文献   

6.
Homeodomains are helix-turn-helix type DNA-binding domains that exhibit sequence-specific DNA binding by insertion of their "recognition" alpha helices into the major groove and a short N-terminal arm into the adjacent minor groove without inducing substantial distortion of the DNA. The stability and DNA binding of four representatives of this family, MATalpha2, engrailed, Antennapedia, and NK-2, and truncated forms of the last two lacking their N-terminal arms have been studied by a combination of optical and microcalorimetric methods at different temperatures and salt concentrations. It was found that the stability of the free homeodomains in solution is rather low and, surprisingly, is reduced by the presence of the N-terminal arm for the Antennapedia and NK-2 domains. Their stabilities depend significantly upon the presence of salt: strongly for NaCl but less so for NaF, demonstrating specific interactions with chloride ions. The enthalpies of association of the homeodomains with their cognate DNAs are negative, at 20 degrees C varying only between -12 and -26 kJ/mol for the intact homeodomains, and the entropies of association are positive; i.e., DNA binding is both enthalpy- and entropy-driven. Analysis of the salt dependence of the association constants showed that the electrostatic component of the Gibbs energy of association resulting from the entropy of mixing of released ions dominates the binding, being about twice the magnitude of the nonelectrostatic component that results from dehydration of the protein/DNA interface, van der Waals interactions, and hydrogen bonding. A comparison of the effects of NaCl/KCl with NaF showed that homeodomain binding results in a release not only of cations from the DNA phosphates but also of chloride ions specifically associated with the proteins. The binding of the basic N-terminal arms in the minor groove is entirely enthalpic with a negative heat capacity effect, i.e., is due to sequence-specific formation of hydrogen bonds and hydrophobic interactions rather than electrostatic contacts with the DNA phosphates.  相似文献   

7.
We have purified and characterized a single-stranded DNA binding protein (N4 SSB) induced after coliphage N4 infection. It has a monomeric molecular weight of 31,000 and contains 10 tyrosine and 1-2 tryptophan amino acid residues. Its fluorescence spectrum is dominated by the tyrosine residues, and their fluorescence is quenched when the protein binds single-stranded DNA. Fluorescence quenching was used as an assay to quantitate binding of the protein to single-stranded nucleotides. The N4 single-stranded DNA binding protein binds cooperatively to single-stranded nucleic acids and binds single-stranded DNA more tightly than RNA. The binding involves displacement of cations from the DNA and anions from the protein. The apparent binding affinity is very salt-dependent, decreasing as much as 1,000-fold for a 10-fold increase in NaCl concentration. The degree of cooperativity (omega) is relatively independent of salt concentration. At 37 degrees C in 0.22 M NaCl, the protein has an intrinsic binding constant for M13 viral DNA of 3.8 x 10(4) M-1, a cooperativity factor omega of 300, and binding site size of 11 nucleotides per monomer. The protein lowers the melting point of poly(dA.dT).poly(dA-dT) by greater than 60 degrees C but cannot lower the melting transition or assist in the renaturation of natural DNA. N4 single-stranded DNA binding protein enhances the rate of DNA synthesis catalyzed by the N4 DNA polymerase by increasing the processivity of the N4 DNA polymerase and melting out hairpin structures that block polymerization.  相似文献   

8.
The nature of a transmembrane transport process depends largely on the identity of the reaction that is rate-limiting in the transport cycle. The one-for-one exchange of two chloride ions across the red cell membrane by band 3 can be decomposed into two component reactions: 1) the binding and dissociation of chloride at the transport site, and 2) the translocation of bound chloride across the membrane. The present work utilizes 35 Cl NMR and 37 Cl NMR to set lower limits on the rates of chloride binding and dissociation at the saturated inward- and outward-facing band 3 transport sites (greater than or equal to 10(5) events site-1 s-1 in all cases). At both 0-3 and 37 degrees C, the NMR data specify that chloride binding and dissociation at the saturated transport sites are not rate-limiting, indicating that translocation of bound chloride across the membrane is the slowest step in the overall transport cycle. Using these results, it is now possible to describe many features of the kinetic equation for the ping-pong transport cycle of band 3. This transport cycle can be decomposed into two half-reactions associated with the transport of two chloride ions in opposite directions across the membrane, where each half-reaction is composed of sequential binding, translocation, and dissociation events. One half-reaction contains the rate-limiting translocation event that controls the turnover of the transport cycle; in this half-reaction, translocation must be slower than binding and dissociation. The other half-reaction contains the non-rate-limiting translocation event that in principle could be faster than binding or dissociation. However, when the following sufficient (but not necessary) condition is satisfied, both translocation events are slower than binding and dissociation: if the non-rate-limiting translocation rate is within a factor of 10(2) (0-3 degrees C) or 2 (37 degrees C) of the overall turnover rate, then translocation is rate-limiting in each saturated half-reaction. Thus, even though chloride appears to migrate through a channel that leads from the transport site to solution, the results support a picture in which the binding, dissociation, and channel migration events are rapid compared to the translocation of bound chloride across the membrane. In this case, chloride binding to the transport site can be described by a simple dissociation constant (KD = kappa OFF/kappa ON) rather than by a Michaelis-Menten constant (KM = (kappa OFF + kappa TRANSLOCATION)/KAPPA ON).  相似文献   

9.
10.
The interaction between rare-earth ions and DNA from Bashibai sheep was studied by microcalorimetry and electrochemistry. The DNA chain was found to have four to five binding sites for rare-earth ions. The binding affinity was about 10??-10?? M. It was also found that smaller ions caused more heat to be released in the process of binding and bound more readily to the nucleic acid chain. This is attributed to the enhanced ability of polarization of smaller ions and reduced steric hindrance compared to larger ions. The electrochemistry results show that rare-earth ions could be inserted into the DNA helix, producing a new complex with electrochemically active groups. The rare-earth ions and DNA complex reached equilibrium after a 90-min incubation at room temperature.  相似文献   

11.
H Yu  N Soong    W F Anderson 《Journal of virology》1995,69(10):6557-6562
A quantitative analysis of the binding kinetics of intact Moloney murine leukemia retrovirus (MoMuLV) particles with NIH 3T3 cells was performed with an immunofluorescence flow cytometry assay. The virus-cell binding equilibrium dissociation constant (KD), expressed in terms of virus particle concentration, was measured to be 8.5 (+/- 6.4) x 10(-12) M at 4 degrees C and was three- to sixfold lower at temperatures above 15 degrees C. The KD of virus binding is about 1,000-fold lower than the KD of purified MoMuLV envelope. The association rate constant was determined to be 2.5 (+/- 0.9) x 10(9) M-1 min-1 at 4 degrees C and was 5- to 10-fold higher at temperatures above 15 degrees C. The apparent dissociation rate constant at 4 degrees C was 1.1 (+/- 0.4) x 10(-3) min-1 and was doubled for every 10 degrees C increase in temperature over the range tested (15 to 37 degrees C).  相似文献   

12.
B Halle  B Lindman 《Biochemistry》1978,17(18):3774-3781
The 35Cl nuclear magnetic quadrupole relaxation enhancement on binding of chloride ions to human plasma albumin (HPA) has been studied under conditions of variable temperature, pH, ionic strength, protein, and sodium dodecyl sulfate concentration. A small number (less than 10) of chloride ions, most of which are bound to the primary detergent binding sites, contribute a major portion of the relaxation enhancement (greater than 80% at neutral pH). A comparison of the pH dependence of the relaxation rate with the hydrogen ion titration curve, which was determined and analyzed, identified ten lysyl and arginyl residues as being involved in the chloride ion binding. These data, in conjuction with NaDodSO4 titrations at different pH values and the amino acid sequence of HPA, suggests that the high-affinity chloride-binding sites are doubly cationic at neutral pH. An irreversible dimerization at acidic pH and 5 x 10(-5) m HPA was detected. The data also indicate the presence of internal modes of motion in the expanded forms of the HPA molecule, probably an independent reorientation of domains. The rate of exchange of chloride ions was shown to be much higher than the corresponding intrinsic relaxation rate in the temperature range 2--26 degrees C and pH values ranging from 4.0 to 10.5. No indications of protein-protein interaction could be found up to the physiological concentration of ca. 6 x 10(-4)m HPA at either neutral or alkaline pH. The mechanistic basis for HPA's exceptional capacity for binding of inorganic anions was discussed.  相似文献   

13.
Modulation of [3H]muscimol binding by picrotoxin, pentobarbitone, and etomidate was investigated in rat cerebellar and cerebral cortical membranes. In cerebellum, at 37 degrees C in the presence of chloride ions (150 mM), picrotoxin and picrotoxinin decreased specific [3H]muscimol binding to 43 +/- 3% of control, with an EC50 of 1.2 +/- 0.1 microM. [3H]Muscimol saturation experiments in the presence and absence of picrotoxin indicated that the picrotoxin effect was primarily due to a loss of high-affinity muscimol sites with KD approximately equal to 10 nM. Pentobarbitone enhanced specific [3H]muscimol binding to 259 +/- 3% of control, with EC50 = 292 +/- 37 microM, and etomidate increased binding to 298 +/- 18%, with EC50 = 7.1 +/- 1.0 microM. The influence of temperature and chloride ion concentration on these effects was investigated by comparing experiments at 37 and 0 degrees C in the presence or absence of chloride at constant ionic strength. The results indicate that studies at 0 degrees C underestimate the coupling between GABA receptors and barbiturate sites and that they greatly overestimate the importance of chloride ions in this phenomenon. In cerebral cortical membranes (37 degrees C, 150 mM Cl-), the effect of picrotoxin was similar to that observed in cerebellum, whereas the effects of pentobarbitone and etomidate were greater, but occurred at higher concentrations.  相似文献   

14.
We have investigated the kinetics of dissociation of actinomycin D from DNA by a variation of the footprinting technique. Complexes of actinomycin with a radiolabelled DNA fragment (tyrT) were dissociated by addition of a large excess of unlabelled calf thymus DNA and the mixture subjected to DNase I footprinting at subsequent intervals. The rates at which the footprints disappeared varied between the different binding sites. The dissociation was temperature dependent with average time constants of 30 s, 10 mins and 2 hours at temperatures of 37 degrees C, 20 degrees C and 4 degrees C respectively. The dissociation from a DNA fragment containing the synthetic insert T9GCA9 was significantly faster, with a half-life of about 1 min at 20 degrees C. In contrast, the dissociation of distamycin was too fast to measure (< 5 s) even at 4 degrees C.  相似文献   

15.
1. The 3':5'-cyclic AMP phosphodiesterase in the microsomal fraction of baker's yeast is highly specific for cyclic AMP, and not inhibited by cyclic GMP, cyclic IMP or cyclic UMP. Catalytic activity is abolished by 30 micrometer-EDTA. At 30 degrees C and pH8.1, the Km is 0.17 micrometer, and theophylline is a simple competitive inhibitor with Ki 0.7 micrometer. The pH optimum is about 7.8 at 0.25 micrometer-cyclic AMP, so that over the physiological range of pH in yeast the activity changes in the opposite direction to that of adenylate cyclase [PH optimum about 6.2; Londesborough & Nurminen (1972) Acta Chem. Scand. 26, 3396-3398].2. At pH 7.2, dissociation of the enzyme from dilute microsomal suspensions increased with ionic strength and was almost complete at 0.3 M-KCl. MgCl2 caused more dissociation than did KCl or NaCl at the same ionic strength, but at low KCl concentrations binding required small amounts of free bivalent metal ions. In 0.1 M-KCl the binding decreased between pH 4.7 and 9.3. At pH 7.2 the binding was independent of temperature between 5 and 20 degrees C. These observations suggest that the binding is electrostatic rather than hydrophobic. 3. The proportion of bound activity increased with the concentration of the microsomal fraction, and at 22 mg of protein/ml and pH 7.2 was 70% at I0.18, and 35% at I0.26. Presumably a substantial amount of the enzyme is particle-bound in vivo. 4. At 5 degrees C in 10 mM-potassium phosphate, pH 7.2, the apparent molecular weight of KCl-solubilized enzyme decreased with enzyme concentration from about 200 000 to 40 000. In the presence of 0.5M-KCl, a constant mol.wt. of about 55 000 was observed over a 20-fold range of enzyme concentrations.  相似文献   

16.
The DNA-binding ability of the poly-ADPribose polymerase-like enzyme from the extremely thermophilic archaeon Sulfolobus solfataricus was determined in the presence of genomic DNA or single stranded oligodeoxyribonucleotides. The thermozyme protected homologous DNA against thermal denaturation by lowering the amount of melted DNA and increasing melting temperature. The archaeal protein induced structural changes of the nucleic acid by modifying the dichroic spectra towards a shape typical of condensing DNA. However, enzyme activity was slightly increased by DNA. Competition assays demonstrated that the protein interacted also with heterologous DNA. In order to characterize further the DNA binding properties of the archaeal enzyme, various ss-oligodeoxyribonucleotides of different base composition, lengths (12-mer to 24-mer) and structure (linear and circular) were used for fluorescence titration measurements. Intrinsic fluorescence of the archaeal protein due to tryptophan (excitation at 295 nm) was measured in the presence of each oligomer at 60 degrees C. Changes of tryptophan fluorescence were induced by all compounds in the same range of base number per enzyme molecule, but independently from the structural features of oligonucleotides, although the protein exhibited a slight preference for those adenine-rich and circular. The binding affinities were comparable for all oligomers, with intrinsic association constants of the same order of magnitude (K=10(6) M(-1)) in 0.01 M Na-phosphate buffer, pH 8.0, and accounted for a "non-specific" binding protein. Circular dichroism analysis showed that at 60 degrees C the native protein was better organized in a secondary structure than at 20 degrees C. Upon addition of oligonucleotides, enzyme structure was further stabilized and changed towards a beta-conformation. This effect was more marked with the circular oligomer. The analysed oligodeoxyribonucleotides slightly enhanced enzyme activity with the maximal increase of 50% as compared to the control. No activation was observed with the circular oligomer.  相似文献   

17.
The binding curves of histones H1 and H5 to chromatin in nuclei have been determined by a novel method which utilises the differential properties of free and bound histones on cross-linking with formaldehyde. The dissociation is thermodynamically reversible as a function of [NaCl]. The binding curves are independent of temperature over the range 4 degrees - 37 degrees C and independent of pH over the range 5.0 to 9.0. The curves are sigmoid, indicating co-operative dissociation with NaCl. The standard free energy of dissociation in 1 M NaCl for H1 is 0.5 Kcals/mole and for H5 is 3.5 Kcals/mole.  相似文献   

18.
The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.  相似文献   

19.
The effects of Trp to Phe exchanges in the Tet repressor on the thermal stability of the proteins and their complexes with operator DNA and inducer have been studied by temperature gradient polyacrylamide gel electrophoresis. The denaturation temperatures obtained by this method are compared with the results from temperature-dependent fluorescence and binding activities of the proteins. It is established that exchanging the interior Trp75 to Phe reduces the thermal stability of the Tet repressor by 8 degrees C while exchanging the exterior Trp43 to Phe has no effect on the stability of the protein. Binding of the inducer tetracycline increases the thermal stability of wild-type and Trp43 to Phe mutant Tet repressors by 5 degrees C, while the ones with the Trp75 to Phe mutation are stabilized by 10 degrees C. The stabilizing effect of operator binding is 20 degrees C in the Trp75 to Phe mutant and only 9 degrees C in the ones with the Trp43 to Phe exchange. In addition to the denaturation temperatures, the gel mobility shifts observed in temperature gradient gel electrophoresis reveal also information about the intermediates of the denaturation reaction. The free proteins and their complexes with the inducer tetracycline exhibit monophasic transitions upon denaturation. The operator complexes of wild-type and Trp75 to Phe mutant repressors denature in more complex reactions. At low temperature they exhibit a stoichiometry of two repressor dimers per tandem tet operator DNA. Upon elevating the temperature they form complexes with only one repressor dimer per DNA fragment. When the temperature is further increased the double-stranded DNA begins to melt from one end resulting in a complex with partially single-stranded DNA which exists only in a narrow temperature range. Finally, the denatured protein and single-stranded DNA are formed at high temperature. The associated mobility shifts are analyzed by changing the ionic strength and characterizing multiphasic melting of a pure DNA fragment by temperature gradient gel electrophoresis.  相似文献   

20.
The binding of progesterone-receptor complexes to chromatin from target and nontarget tissues was studied in vitro. Chromatin from both target and nontarget tissues responds in a similar manner to saly and cofactors and has the same K(D) (approx. 3.10(-9) M) for the progesterone-receptor complex. The only observed difference in the binding of the progesterone-receptor complex to target and nontarget chromatins is the difference in total number of acceptor sites. oviduct chromatin has approx. 1300 sites/pg DNA, spleen chromatin has approx. 840 sites/pg DNA, and erythrocyte chromatin has about 330 sites/pg DNA. The K(D) and number of acceptor sites for progesterone-receptor complex binding to oviduct chromatin remains the same even after extensive purification of the progesterone-receptor complex. Activation of cytosol labeled with [3H]progesterone by preincubation at 25 degrees C, analogous to that required for maximal nuclear binding, occurs if the binding studies to chromatin are performed in 0.025 M salt. The absence of an observable temperature effect when the studies are performed at 0.15 M salt is due to the activation of the receptor by salt. The dissociation of the progesterone-receptor complex from chromatin exhibits a single dissociation rate and the initial event is the appearance of free progesterone rather than a progesterone-receptor complex. Lastly, the treatment of chromatin with an antibody prepared against either single-stranded DNA or double-stranded DNA does not alter the extent of binding of the progesterone-receptor complex. Similarly, pretreatment of chromatin with a single-stranded nuclease does not inhibit the capacity of chromatin to bind the hormone-receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号