首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formamidopyrimidine-DNA glycosylase (Fpg) is a primary participant in the repair of 8-oxoguanine, an abundant oxidative DNA lesion. Although the structure of Fpg has been established, amino acid residues that define damage recognition have not been identified. We have combined molecular dynamics and bioinformatics approaches to address this issue. Site-specific mutagenesis coupled with enzyme kinetics was used to test our predictions. On the basis of molecular dynamics simulations, Lys-217 was predicted to interact with the O8 of extrahelical 8-oxoguanine accommodated in the binding pocket. Consistent with our computational studies, mutation of Lys-217 selectively reduced the ability of Fpg to excise 8-oxoguanine from DNA. Dihydrouracil, also a substrate for Fpg, served as a nonspecific control. Other residues involved in damage recognition (His-89, Arg-108, and Arg-109) were identified by combined conservation/structure analysis. Arg-108, which forms two hydrogen bonds with cytosine in Fpg-DNA, is a major determinant of opposite-base specificity. Mutation of this residue reduced excision of 8-oxoguanine from thermally unstable mispairs with guanine or thymine, while excision from the stable cytosine and adenine base pairs was less affected. Mutation of His-89 selectively diminished the rate of excision of 8-oxoguanine, whereas mutation of Arg-109 nearly abolished binding of Fpg to damaged DNA. Taken together, these results suggest that His-89 and Arg-109 form part of a reading head, a structural feature used by the enzyme to scan DNA for damage. His-89 and Lys-217 help determine the specificity of Fpg in recognizing the oxidatively damaged base, while Arg-108 provides specificity for bases positioned opposite the lesion.  相似文献   

2.
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) from damaged DNA. Here, we report the crystal structure of the Fpg protein from Lactococcus lactis (LlFpg) bound to a carbocyclic FapydG (cFapydG)-containing DNA. The structure reveals that Fpg stabilizes the cFapydG nucleoside into an extrahelical conformation inside its substrate binding pocket. In contrast to the recognition of the 8-oxodG lesion, which is bound with the glycosidic bond in a syn conformation, the cFapydG lesion displays in the complex an anti conformation. Furthermore, Fpg establishes interactions with all the functional groups of the FapyG base lesion, which can be classified in two categories: (i) those specifying a purine-derived lesion (here a guanine) involved in the Watson-Crick face recognition of the lesion and probably contributing to an optimal orientation of the pyrimidine ring moiety in the binding pocket and (ii) those specifying the imidazole ring-opened moiety of FapyG and probably participating also in the rotameric selection of the FapydG nucleobase. These interactions involve strictly conserved Fpg residues and structural water molecules mediated interactions. The significant differences between the Fpg recognition modes of 8-oxodG and FapydG provide new insights into the Fpg substrate specificity.  相似文献   

3.
Lavrukhin OV  Lloyd RS 《Biochemistry》2000,39(49):15266-15271
Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates.  相似文献   

4.
Formamidopyrimidine-DNA glycosylase (Fpg; MutM) is a DNA repair enzyme widely distributed in bacteria. Fpg recognizes and excises oxidatively modified purines, 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxoguanine (8-oxoG), with similar excision kinetics. It exhibits some lesser activity toward 8-oxoadenine. Fpg enzymes are also present in some plant and fungal species. The eukaryotic Fpg homologs exhibit little or no activity on DNA containing 8-oxoG, but they recognize and process its oxidation products, guanidinohydantoin (Gh) and spiroiminohydantoin (Sp). To date, several structures of bacterial Fpg enzymes unliganded or in complex with DNA containing a damaged base have been published but there is no structure of a eukaryotic Fpg. Here we describe the first crystal structure of a plant Fpg, Arabidopsis thaliana (AthFpg), unliganded and bound to DNA containing an abasic site analog, tetrahydrofuran (THF). Although AthFpg shares a common architecture with other Fpg glycosylases, it harbors a zincless finger, previously described in a subset of Nei enzymes, such as human NEIL1 and Mimivirus Nei1. Importantly the "αF-β9/10 loop" capping 8-oxoG in the active site of bacterial Fpg is very short in AthFpg. Deletion of a segment encompassing residues 213-229 in Escherichia coli Fpg (EcoFpg) and corresponding to the "αF-β9/10 loop" does not affect the recognition and removal of oxidatively damaged DNA base lesions, with the exception of 8-oxoG. Although the exact role of the loop remains to be further explored, it is now clear that this protein segment is specific to the processing of 8-oxoG.  相似文献   

5.
Formamidopyrimidine-DNA glycosylase (Fpg) identifies and removes 8-oxoguanine from DNA. All of the X-ray structures of Fpg complexed to an abasic site containing DNA exhibit a common disordered region present in the C-terminal domain of the enzyme. However, this region is believed to be involved in the damaged base binding site when the initial protein/DNA complex is formed. The dynamic behavior of the disordered polypeptide (named Loop) in relation to the supposed scenario for the DNA repair mechanism was investigated by molecular dynamics on different models, derived from the X-ray structure of Lactococcus lactis Fpg bound to an abasic site analog-containing DNA and of Bacillus stearothermophilus Fpg bound to 8-oxoG. This study shows that the presence of the damaged base influences the dynamics of the whole enzyme and that the Loop location is dependent on the presence and on the conformation of the 8-oxoG in its binding site. In addition, from our results, the conformation of the 8-oxoG seems to be favored in syn in the L. lactis models, in agreement with the available X-ray structure from B. stearothermophilus Fpg and with a possible catalytic role of the flexibility of the Loop region.  相似文献   

6.
Formamidopyrimidine-DNA-glycosylase (Fpg pro tein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2′-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation.  相似文献   

7.
Formamidopyrimidine-DNA glycosylase (Fpg) excises oxidized purines from damaged DNA. The recent determination of the three-dimensional structure of the covalent complex of DNA with Escherichia coli Fpg, obtained by reducing the Schiff base intermediate formed during the reaction [Gilboa et al., J. Biol. Chem. 277 (2002) 19811] has revealed a number of potential specific and non-specific interactions between Fpg and DNA. We analyze the structural data for Fpg in the light of the kinetic and thermodynamic data obtained by the method of stepwise increase in ligand complexity to estimate relative contributions of individual nucleotide units of lesion-containing DNA to its total affinity for this enzyme [Ishchenko et al., Biochemistry 41 (2002) 7540]. Stopped-flow kinetic analysis that has allowed the dissection of Fpg catalysis in time [Fedorova et al., Biochemistry 41 (2002) 1520] is also correlated with the structural data.  相似文献   

8.
Deinococcus radiodurans is able to resist and survive extreme DNA damage induced by ionizing radiation and many other DNA-damaging agents. It is believed that it possesses highly efficient DNA repair mechanisms. To characterize the repair pathway of oxidized purines in this bacteria, we have purified, from crude extracts, proteins that recognize these oxidized bases. We report here that D. radiodurans possesses two proteins excising the oxidized purines (formamidopyrimidine and 8-oxoguanine) by a DNA glycosylase–a purinic/apyrimidine lyase mechanism. Moreover, one of those proteins is endowed with a thymine glycol DNA glycosylase activity. One of these proteins could be the homolog of the Escherichia coli Fpg enzyme, which confirms the existence of a base excision repair system in this bacteria.  相似文献   

9.
Formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) share an overall common three-dimensional structure and primary amino acid sequence in conserved structural motifs but have different substrate specificities, with bacterial Fpg proteins recognizing formamidopyrimidines, 8-oxoguanine (8-oxoG) and its oxidation products guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) and bacterial Nei proteins recognizing primarily damaged pyrimidines. In addition to bacteria, Fpg has also been found in plants, while Nei is sparsely distributed among the prokaryotes and eukaryotes. Phylogenetic analysis of Fpg and Nei DNA glycosylases demonstrated, with 95% bootstrap support, a clade containing exclusively sequences from plants and fungi. Members of this clade exhibit sequence features closer to bacterial Fpg proteins than to any protein designated as Nei based on biochemical studies. The Candida albicans (Cal) Fpg DNA glycosylase and a previously studied Arabidopsis thaliana (Ath) Fpg DNA glycosylase were expressed, purified and characterized. In oligodeoxynucleotides, the preferred glycosylase substrates for both enzymes were Gh and Sp, the oxidation products of 8-oxoG, with the best substrate being a site of base loss. GC/MS analysis of bases released from γ-irradiated DNA show FapyAde and FapyGua to be excellent substrates as well. Studies carried out with oligodeoxynucleotide substrates demonstrate that both enzymes discriminated against A opposite the base lesion, characteristic of Fpg glycosylases. Single turnover kinetics with oligodeoxynucleotides showed that the plant and fungal glycosylases were most active on Gh and Sp, less active on oxidized pyrimidines and exhibited very little or no activity on 8-oxoG. Surprisingly, the activity of AthFpg1 on an AP site opposite a G was extremely robust with a kobs of over 2500 min?1.  相似文献   

10.
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. The Schiff base intermediate formed during this reaction between Escherichia coli Fpg and DNA was trapped by reduction with sodium borohydride, and the structure of the resulting covalently cross-linked complex was determined at a 2.1-A resolution. Fpg is a bilobal protein with a wide, positively charged DNA-binding groove. It possesses a conserved zinc finger and a helix-two turn-helix motif that participate in DNA binding. The absolutely conserved residues Lys-56, His-70, Asn-168, and Arg-258 form hydrogen bonds to the phosphodiester backbone of DNA, which is sharply kinked at the lesion site. Residues Met-73, Arg-109, and Phe-110 are inserted into the DNA helix, filling the void created by nucleotide eversion. A deep hydrophobic pocket in the active site is positioned to accommodate an everted base. Structural analysis of the Fpg-DNA complex reveals essential features of damage recognition and the catalytic mechanism of Fpg.  相似文献   

11.
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.  相似文献   

12.
Harbut MB  Meador M  Dodson ML  Lloyd RS 《Biochemistry》2006,45(23):7341-7346
In recent years, significant progress has been made in determining the catalytic mechanisms by which base excision repair (BER) DNA glycosylases and glycosylase-abasic site (AP) lyases cleave the glycosyl bond. While these investigations have identified active site residues and active site architectures, few investigations have analyzed postincision turnover events. Previously, we identified a critical residue (His16) in the T4-pyrimidine dimer glycosylase (T4-Pdg) that, when mutated, interferes with enzyme turnover [Meador et al. (2004) J. Biol. Chem. 279, 3348-3353]. To test whether comparable residues and mechanisms might be operative for other BER glycosylase:AP-lyases, molecular modeling studies were conducted comparing the active site regions of T4-Pdg and the Escherichia coli formamidopyrimidine DNA glycosylase (Fpg). These analyses revealed that His71 in Fpg might perform a similar function to His16 in T4-Pdg. Site-directed mutagenesis of the Fpg gene and analyses of the reaction mechanism of the mutant enzyme revealed that the H71A enzyme retained activity on a DNA substrate containing an 8-oxo-7,8-dihydroguanine (8-oxoG) opposite cytosine and DNA containing an AP site. The H71A Fpg mutant was severely compromised in enzyme turnover on the 8-oxoG-C substrate but had turnover rates comparable to that of wild-type Fpg on AP-containing DNA. The similar mutant phenotypes for these two enzymes, despite a complete lack of structural or sequence homology between them, suggest a common mechanism for the rate-limiting step catalyzed by BER glycosylase:AP-lyases.  相似文献   

13.
During repair of damaged DNA, the oxidized base 8-oxoguanine (8-oxoG) is removed by 8-oxoguanine-DNA glycosylase (Ogg) in eukaryotes and most archaea, whereas in most bacteria it is removed by formamidopyrimidine-DNA glycosylase (Fpg). We report the first characterization of a bacterial Ogg, Clostridium acetobutylicum Ogg (CacOgg). Like human OGG1 and Escherichia coli Fpg (EcoFpg), CacOgg excised 8-oxoguanine. However, unlike hOGG1 and EcoFpg, CacOgg showed little preference for the base opposite the damage during base excision and removed 8-oxoguanine from single-stranded DNA. Thus, our results showed unambiguous qualitative functional differences in vitro between CacOgg and both hOGG1 and EcoFpg. CacOgg differs in sequence from the eukaryotic enzymes at two sequence positions, M132 and F179, which align with amino acids (R154 and Y203) in human OGG1 (hOGG1) found to be involved in opposite base interaction. To address the sequence basis for functional differences with respect to opposite base interactions, we prepared three CacOgg variants, M132R, F179Y, and M132R/F179Y. All three variants showed a substantial increase in specificity for 8-oxoG.C relative to 8-oxoG.A. While we were unable to definitively associate these qualitative functional differences with differences in selective pressure between eukaryotes, Clostridia, and other bacteria, our results are consistent with the idea that evolution of Ogg function is based on kinetic control of repair.  相似文献   

14.
The enzyme 8-oxoguanine DNA glycosylase 1 participates in the repair of damaged DNA by excising the oxidized base 8-hydroxy-2'-deoxyguanosine. We have previously demonstrated that enzymatic activity of this enzyme is inversely related to the levels of the damaged base in specific brain regions. We now report that the activity of 8-oxoguanine DNA glycosylase 1 is increased in a region-specific manner following treatment with diethylmaleate, a compound that reduces glutathione levels in the cell. A single treatment with diethylmaleate elicited a significant increase ( approximately 2-fold) in the activity of 8-oxoguanine DNA glycosylase 1 in three brain regions with low basal levels of activity (cerebellum, cortex, and pons/medulla). There was no change in the activity of 8-oxoguanine DNA glycosylase 1 in those regions with high basal levels of activity (hippocampus, caudate/putamen, and midbrain). This is the first report to demonstrate that DNA repair capacity can be upregulated in the CNS, and the increased repair activity correlates with a reduction in the levels of DNA damage. The brain region-specific capacity to deal with increased oxidative damage to DNA may be responsible, in part, for the vulnerability of specific neuronal populations with aging, sources of oxidative stress, and neurodegenerative diseases.  相似文献   

15.
Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside.  相似文献   

16.
Amara P  Serre L 《DNA Repair》2006,5(8):947-958
The formamidopyrimidine-DNA glycosylase (Fpg) recognizes and eliminates efficiently 8-oxoguanine, an abundant mutagenic DNA lesion. The X-ray structure of the inactive E3Q mutant of Fpg from Bacillus stearothermophilus, complexed to an 8-oxoG-containing DNA, revealed a small peptide (called the alphaF-beta10 loop) involved in the recognition of the lesion via an interaction with the protonated N(7) atom. This region, which is disordered in the X-ray models where an abasic site-containing DNA is bound to Fpg, interacts tightly with the 8-oxoG which appears to be confined within the enzyme. Molecular dynamics simulations were performed on this mutant and the wild type derived model at 298 and 323K, to determine if this tight assembly around the 8-oxoG was due to the mutation and/or to an inappropriate experimental temperature. Differences in the relative orientation of the protein structural domains and in the architecture around the damaged base were observed, depending on the presence of the mutation and/or on the temperature. This data allowed us to show that the recognition of the damaged base by the wild type enzyme close to its optimal temperature might require significant movements of the enzyme, leading to conformational changes that could not be detected within the only X-ray structure. In addition, a dynamics performed with a normal guanine suggests that the alphaF-beta10 loop dynamics could be needed by the active Fpgs to distinguish a damaged guanine from a normal nucleotide.  相似文献   

17.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

18.
Formamidopyrimidine-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that excises oxidized purine bases, most notably the mutagenic 7-hydro-8-oxoguanine, from damaged DNA. In order to identify specific contacts between nucleobases of DNA and amino acids from the E. coli Fpg protein, photochemical cross-linking was employed using new reactive DNA duplexes containing 5-[4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]-2'-deoxyuridine dU* residues near the 7-hydro-8-oxoguanosine (oxoG) lesion. The Fpg protein was found to bind specifically and tightly to the modified DNA duplexes and to incise them. The nicking efficiency of the DNA duplex containing a dU* residue 5' to the oxoG was higher as compared to oxidized native DNA. The conditions for the photochemical cross-linking of the reactive DNA duplexes and the Fpg protein have been optimized to yield as high as 10% of the cross-linked product. Our results suggest that the Fpg protein forms contacts with two nucleosides, one 5' adjacent to oxoG and the other 5' adjacent to the cytidine residue pairing with oxoG in the other strand. The approaches developed may be applicable to pro- and eukaryotic homologues of the E. coli Fpg protein as well as to other repair enzymes.  相似文献   

19.
Mut M(formamidopyrimidine-DNA glycosylase,Fpg)是原核生物碱基切除修复系统(BER)中同时具有DNA糖苷酶和脱嘌呤/脱嘧啶AP裂解酶活性的一种双功能酶,不但可以识别DNA损伤,而且能切除损伤的碱基,从而参与到许多种损伤的修复过程.除了高致突变率的8-羟基鸟嘌呤(8-oxoguanine,8-oxo G)外,Mut M在其他损伤修复中具体作用机制还不清楚.本研究主要以耻垢分枝杆菌(M.smegmatis)为研究对象,利用串联亲和纯化技术和质谱相结合的方法对可能与Mut M相互作用的蛋白因子进行发现和鉴定,并于体外用Far-western和GST pull-down方法对鉴定出的蛋白DEAD-box rna helicase、Rps C、Uvr A与Mut M的相互作用进行了验证.实验结果表明,利用串联亲和纯化方法来发现Mut M相互作用的蛋白是切实可行的.本研究为进一步深入研究Mut M在其参与的损伤修复中的具体机制提供了切入点.  相似文献   

20.
Formamidopyrimidine-DNA-glycosylase of Escherichia coli (Fpg protein) repairs oxidative DNA damage by removing formamidopyrimidine lesions and 8-oxoguanine residues from DNA. This enzyme possesses three types of activities resulting in the excision of oxidized residue from DNA: hydrolysis of the N-glycosidic bond (DNA glycosylase), beta-elimination (AP-lyase), and delta-elimination. In our work, the kinetic mechanism for 8-oxoguanine excision from DNA substrate with Fpg protein has been determined from stopped-flow measurements of changes in the tryptophan fluorescence. The 12-nucleotide duplex d(CTCTC(oxo)GCCTTCC)*d(GGAAGGCGAGAG) containing the 8-oxoG nucleotide in the sixth position of one strand was used as the specific substrate. Four distinct phases in the time traces were detected. These four-phase transition changes in the Fpg protein fluorescence curves were analyzed by global fitting to determine the intrinsic rate constants. We propose that the first two phases represent the equilibrium steps. The first of them describes the bimolecular binding step and the second, formation of the apurinic site. The third, irreversible step is believed to describe the beta-elimination process. The fourth step reflects the delta-elimination and decomposition of complex between enzyme and the product of 8-oxoG nucleotide excision. The results obtained provide direct evidence of conformational transitions of the Fpg protein during the catalytic process. The significance of these results for the functioning of Fpg protein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号