首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The synthesis of cytochrome b in yeast depends on the expression of both mitochondrial and nuclear gene products that act at the level of processing of the pre-mRNA, translation of the mRNA, and maturation of the apoprotein during its assembly with the nuclear-encoded subunits of coenzyme QH2-cytochrome c reductase. Previous studies indicated one of the nuclear genes (CBP2) to code for a protein that is needed for the excision of the terminal intervening sequence from the pre-mRNA. We show here that the intervening sequence can promote its own excision in the presence of high concentrations of magnesium ion (50 mM), but that at physiological concentrations of the divalent cation (5 mM), the splicing reaction requires the presence of the CBP2-encoded product. These results provide strong evidence for a direct participation of the protein in splicing, most likely in stabilizing a splicing competent structure in the RNA. The conversion of apocytochrome b to the functional cytochrome has been examined in mutants lacking one or multiple structural subunits of the coenzyme QH2-cytochrome c reductase complex. Based on the phenotypes of the different mutants studied, the following have been concluded. (i) The assembly of catalytically active enzyme requires the synthesis of all except the 17 kDa subunit. (ii) Membrane insertion of the individual subunits is not contingent on protein-protein interactions. (iii) Assembly of the subunits occurs in the lipid bilayer following their insertion. (iv) The attachment of haem to apocytochrome b is a late event in assembly after an intermediate complex of the structural subunits has been formed. This complex minimally is composed of apocytochrome b, the non haem iron protein and all the non-catalytic subunits except for the 17 kDa core 3 subunit.  相似文献   

4.
1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.  相似文献   

5.
The respiratory deficiency of yeast strains previously assigned to complementation group G7 has been ascribed to the absence in the mutants of functional cytochrome b. Since G7 mutants are capable of synthesizing the apoprotein, the primary effect of the mutations is to prevent maturation of this electron carrier. The recombinant plasmid pG7/T1 with a 6.7-kilobase pairs (kb) insert of wild type yeast nuclear DNA has been selected from a genomic library by transformation of a G7 mutant to respiratory competency. The genetically active region of the pG7/T1 insert has been subcloned on a 3-kb fragment of DNA which has been shown to contain an open reading frame encoding a protein of 50,236 Mr. In situ disruption of the reading frame causes a deficiency in cytochrome b. The strain with the disrupted gene fails to complement G7 mutants thereby confirming the correct identification of the gene henceforth referred to as COR1. The carboxyl-terminal half of the COR1 gene has been fused to the amino-terminal half of the Escherichia coli trpE gene in the high expression vector pATH2. This plasmid construct promotes a high level of expression of the trpE/COR1 hybrid protein. Antibodies against the purified hybrid protein react with a 44 kDa protein subunit of yeast coenzyme QH2-cytochrome c reductase corresponding to the largest core subunit of the complex. These data indicate that the yeast nuclear gene COR1 codes for the 44-kDa core protein and that the latter is required for the conversion of apocytochrome b to mature cytochrome b.  相似文献   

6.
Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisiae.   总被引:87,自引:0,他引:87  
  相似文献   

7.
Mutants of Saccharomyces cerevisiae resistant to the antibiotic mucidin, a specific inhibitor of electron transport between cytochrome b and c, were isolated and divided into three phenotypic groups, as follows. Class 1 mutants were cross-resistant to a variety of mitochondrial inhibitors and exhibited no resistance at the mitochondrial level. Class 2 mutants were specifically resistant to mucidin exhibiting resistance also at the level of isolated mitochondria. Biochemical studies indicated that the mucidin resistance in class 2 mutants involved a modification of mucidin binding of inhibitory sites on the mitochondrial inner membrane without a significance change in the sensitivity of mitochondrial oxygen uptake to antimycin A, 2-heptyl-4-hydroxyquinoline-N-oxide, and 2,3-dimercaptopropanol. Class 3 was represented by a mutant which showed a high degree of resistance to mucidin and was cross-resistant to a variety of mitochondrial inhibitors at the cellular level but exhibited only a resistance to mucidin at the mitochondrial level. Genetic analysis of mucidin-resistant mutants revealed the presence of both nuclear and mitochondrial genes determining mucidin resistance/sensitivity in yeast. Resistance to mucidin in class 1 mutants was due to a single-gene nuclear recessive mutation (mucPR) whereas that in class 2 mutants was caused by mutations of mitochondrial genes. Resistance in class 3 mutant was determined both by single-gene nuclear and mitochondrial mutations. In the mitochondrial mutants the mucidin resistance segregated mitotically and the resistance determinant was lost upon induction of petite mutation by ethidium bromide. Allelism tests indicated that the mucidin resistance mutations fell into two genetic loci (MUC1 and MUC2) which were apparently not closely linked in the mitochondrial genome. Recombination studies showed that the two mitochondrial mucidin loci were not allelic with other mitochondrial loci RIB1, RIB2 and OLI1. An extremely high mucidin resistance at the cellular level was shown to arise from synergistic interaction of the nuclear gene mucPR and the mitochondrial mucidin-resistance gene (MR) in a cell. The results suggest that at least two mitochondrial gene products, responsible for mucidin resistance/sensitivity in yeast, take part in the formation of the cytochrome bc1 region of the mitochondrial respiratory chain.  相似文献   

8.
9.
Funiculosin is a well-known inhibitor of the mitochondrial respiratory chain, probably acting at the ubiquinone reducing site or center i of QH2-cytochrome c reductase. We report here the isolation, mapping and RNA sequence analysis of yeast apo-cytochrome b mutants resistant to this inhibitor. Funiculosin-resistance was found to be conferred, in 4 independent isolates, upon replacement of a leucine residue by phenylalanine in position 198 of the cytochrome b polypeptide chain.  相似文献   

10.
Hybridization saturation analyses of mitochondrial DNA from 11 petite clones genetically characterized with respect to chloramphenicol and erythromycin resistance markers, have been carried out with 11 individual mitochrondrial transfer RNAs. Mitochondrial tRNA cistrons were lost, retained, or amplified in different petite strains. In some cases hybridization levels corrected for kinetic complexity of the mtDNA3 were two- to threefold greater than that for grande mtDNA indicating selective amplification, or increased number of copies, of the segment of mtDNA containing that tRNA cistron. Hybridization levels corrected for reduced kinetic complexity of petite mtDNAs in many cases were only 1 to 10% of that for grande mtDNA suggesting a low level of intracellular molecular heterogeneity of mtDNA with respect to tRNA cistrons. Some petite clones that retained tRNA genes continued to transcribe mitochondrial tRNAs, since tRNA isolated from these strains could be aminoacylated with Escherichia, coli synthetases and hybridized with mtDNA. Hybridization data allow us to order several of the tRNA cistrons on the mitochondrial genome with respect to the chloramphenicol and erythromycin antibiotic resistance markers.  相似文献   

11.
12.
A method has been devised to test intergenic complementation of mutations in the mitochondrial DNA of Saccharomyces cerevisiae. The test is based on the observation that diploids issued from pairwise crosses of certain mit- mutants with deficiencies in cytochrome oxidase, or coenzyme QH2-cytochrome c reductase, acquire high levels of respiratory activity shortly after zygote formation. Under our experimental conditions neither biochemical complementation, interallelic complementation, nor recombination has been found to contribute to any significant extent toward the respiration measured in the diploids at early times. The test has been used to study the number of complementation groups represented by a large number of mit- mutants. Results of pairwise crosses of mutants in the oxi 1, oxi 2, oxi 3, cob 1, and cob 2 loci indicate that complementation occurs between the oxi and cob loci between different oxi loci but not between the two cob loci. The five loci have, therefore, been assigned to four different complementation groups.  相似文献   

13.
Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme.  相似文献   

14.
Summary Retention or loss of the two new mitochondrial antimycin A resistance loci AI and AII has been analyzed in a large number of stable cytoplasmic petite mutants. Using these deletion mutants it was possible to localize the two antimycin A resistance loci in the OI-OII region of mitochondrial DNA. The genetic loci are mapped in the following order: OII-AI-AII-cobl-OI. The mapping relationship of mutants resistant to antimycin A or funiculosin to various cob mutants is described.  相似文献   

15.
Three threonine-overproducing mutants were obtained as prototrophic revertants of a hom3 mutant strain of Saccharomyces cerevisiae. The gene HOM3 codes for aspartokinase (aspartate kinase; EC 2.7.2.4), the first enzyme of the threonine-methionine biosynthetic route, which is subjected to feedback inhibition by threonine. Enzymatic studies indicated that aspartokinase from the revertants has lost the feedback inhibition, resulting in overproduction of threonine. These revertants also bore one or two additional mutations, named tex1-1 and tex2-1, which alone or jointly made possible the excretion of the threonine accumulated. The effect of these two genes on excretion is potentiated by excess inositol in the medium.  相似文献   

16.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

17.
Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions.  相似文献   

18.
19.
20.
The understanding of the processes underlying organellar function and inheritance requires the identification and characterization of the molecular components involved. We pursued a genomic approach to define the complements of genes required for respiratory growth and inheritance of mitochondria with normal morphology in yeast. With the systematic screening of a deletion mutant library covering the nonessential genes of Saccharomyces cerevisiae the numbers of genes known to be required for respiratory function and establishment of wild-type-like mitochondrial structure have been more than doubled. In addition to the identification of novel components, the systematic screen revealed unprecedented mitochondrial phenotypes that have never been observed by conventional screens. These data provide a comprehensive picture of the cellular processes and molecular components required for mitochondrial function and structure in a simple eukaryotic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号