首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

2.
The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. The biliary bile salts of human differ from those of rat in containing a greater proportion of glycine conjugates and taurolithocholate 3-sulfate (TLC-S). In the present study, the transport properties of hBSEP and rBsep were investigated using membrane vesicles from HEK293 cells infected with recombinant adenoviruses containing hBSEP or rBsep cDNA. ATP-dependent uptake of radiolabeled glycine-, taurine-conjugated bile salts, and [(3)H]cholate was observed when hBSEP or rBsep was expressed. Comparison of initial uptake rates indicated that for both transporters, taurine-conjugated bile salts were transported more rapidly than glycine-conjugated bile salts, however, hBSEP transported glycine conjugates to an extent that was approximately 2-fold greater than rBsep. In addition, [(3)H]TLC-S was significantly transported by hBSEP, and hardly transported by rBsep. The mean K(m) value for the uptake of [(3)H]TLC-S by hBSEP was 9.5+/-1.5 microM, a value similar to that for hMRP2 (8.2+/-1.3 microM). In conclusion, both hBSEP and rBsep transport taurine-conjugated bile salts better than glycine-conjugated bile salts, but hBSEP transports glycine conjugates to a greater extent as compared to rBsep. TLC-S, which is present in human bile but not rodent bile, is more avidly transported by hBSEP compared with rBsep.  相似文献   

3.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

4.
A wide array of drugs, xenobiotics, and endogenous compounds undergo detoxification by conjugation with glucuronic acid in the liver via the action of UDP-glucuronosyltransferases. The mechanism whereby glucuronides, generated by this enzyme system in the lumen of the endoplasmic reticulum (ER), are exported to the cytosol prior to excretion is unknown. We examined this process in purified rat liver microsomes using a rapid filtration technique and [(3)H]estradiol-17beta-d-glucuronide ([(3)H]E(2)17betaG) as model substrate. Time-dependent uptake of intact [(3)H]E(2)17betaG was observed and shrinkage of ER vesicles by raffinose lowered the steady-state level of [(3)H]E(2)17betaG accumulation. In addition, rapid efflux of [(3)H]E(2)17betaG from rat liver microsomal vesicles suggested that the transport process is bidirectional. Microsomal uptake was saturable with an apparent K(m) and V(max) of 3.29 +/- 0.58 microm and 0.19 +/- 0.02 nmol.min(-1).mg protein(-1), respectively. Transport of [(3)H]E(2)17betaG was inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and probenecid. Specificity of the transport process was investigated by studying the cis-inhibitory effect of anionic metabolites, as well as substrates of the plasma membrane multidrug resistance-associated proteins on the uptake of [(3)H]E(2)17betaG. Collectively, these data are indicative of a novel multifunctional and bidirectional protein carrier for E(2)17betaG and other anionic compounds in the hepatic ER. This intracellular membrane transporter may contribute to the phenomenon of multidrug resistance.  相似文献   

5.
Multidrug resistance protein 3 (MRP3) is an ATP-dependent transporter of 17beta-estradiol 17beta(d-glucuronide) (E(2)17betaG), leukotriene C(4) (LTC(4)), methotrexate, and the bile salts taurocholate and glycocholate. In the present study, the role of a highly conserved Trp residue at position 1242 on MRP3 transport function was examined by expressing wild-type MRP3 and Ala-, Cys-, Phe-, Tyr-, and Pro-substituted mutants in human embryonic kidney 293T cells. Four MRP3-Trp(1242) mutants showed significantly increased E(2)17betaG uptake, whereas transport by the Pro mutant was undetectable. Similarly, the Pro mutant did not transport LTC(4). By comparison, LTC(4) transport by the Ala, Cys, Phe, and Tyr mutants was reduced by approximately 35%. The Ala, Cys, Phe, and Tyr mutants all showed greatly reduced methotrexate and leucovorin transport, except the Tyr mutant, which transported leucovorin at levels comparable with wild-type MRP3. In contrast, the MRP3-Trp(1242) substitutions did not significantly affect taurocholate transport or taurocholate and glycocholate inhibition of E(2)17betaG uptake. Thus Trp(1242) substitutions markedly alter the substrate specificity of MRP3 but leave bile salt binding and transport intact.  相似文献   

6.
The multidrug resistance proteins MRP2 (ABCC2) and MRP3 (ABCC3) are key primary active transporters involved in anionic conjugate and drug extrusion from the human liver. The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream. Both proteins were shown to interact with a large variety of transported substrates, and earlier studies suggested that MRPs may work as co-transporters for different molecules. In the present study we expressed the human MRP2 and MRP3 proteins in insect cells and examined their transport and ATPase characteristics in isolated, inside-out membrane vesicles. We found that the primary active transport of estradiol-17-beta-d-glucuronide (E217betaG), a major product of human steroid metabolism, was differently modulated by bile acids and organic anions in the case of human MRP2 and MRP3. Active E217betaG transport by MRP2 was significantly stimulated by the organic anions indomethacin, furosemide, and probenecid and by several conjugated bile acids. In contrast, all of these agents inhibited E217betaG transport by MRP3. We found that in the case of MRP2, ATP-dependent vesicular bile acid transport was increased by E217betaG, and the results indicated an allosteric cross-stimulation, probably a co-transport of bile acids and glucuronate conjugates through this protein. There was no such stimulation of bile acid transport by MRP3. In conclusion, the different transport modulation of MRPs by bile acids and anionic drugs could play a major role in regulating physiological and pathological metabolite fluxes in the human liver.  相似文献   

7.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) play a crucial role in the induction of lung cancer, and NNAL-O-glucuronide formation and elimination are important steps in detoxification of these compounds. In the present study, we investigated the ATP-binding cassette (ABC) protein, MRP1 (ABCC1), as a candidate transporter responsible for NNAL-O-glucuronide export. MRP1 mediates the active transport of numerous GSH-, sulfate-, and glucuronide-conjugated organic anions and can transport certain xenobiotics by a mechanism that may involve co-transport with GSH. Using membrane vesicles prepared from transfected cells, we found that MRP1 transports [3H]NNAL-O-glucuronide but is dependent on the presence of GSH (Km 39 microm, Vmax 48 pmol x mg(-1) x min(-1)). We also found that the sulfur atom in GSH was dispensable because transport was supported by the GSH analog, gamma-glutamyl-alpha-aminobutyryl-glycine. Despite stimulation of NNAL-O-glucuronide transport by GSH, there was no detectable reciprocal stimulation of [3H]GSH transport. Moreover, whereas the MRP1 substrates leukotriene C4 (LTC4) and 17beta-estradiol 17beta-(d-glucuronide) (E(2)17betaG) inhibited GSH-dependent uptake of [3H]NNAL-O-glucuronide, only [3H]LTC4 transport was inhibited by NNAL-O-glucuronide (+GSH) and the kinetics of inhibition were complex. A mutant form of MRP1, which transports LTC4 but not E(2)17betaG, also did not transport NNAL-O-glucuronide suggesting a commonality in the binding elements for these two glucuronidated substrates, despite their lack of reciprocal transport inhibition. Finally, the related MRP2 transported NNAL-O-glucuronide with higher efficiency than MRP1 and unexpectedly, GSH inhibited rather than stimulated uptake. These studies provide further insight into the complex interactions of the MRP-related proteins with GSH and their conjugated organic anion substrates, and extend the range of xenotoxins transported by MRP1 and MRP2 to include metabolites of known carcinogens involved in the etiology of lung and other cancers.  相似文献   

8.
Benzylpenicillin (PCG; 180 micromol/kg), a classic beta-lactam antibiotic, was intravenously given to Sprague-Dawley (SD) rats and multidrug resistance-associated protein 2 (Mrp2)-deficient Eisai hyperbilirubinemic rats (EHBR). A percentage of the [(3)H]PCG was excreted into the bile of the rats within 60 min (SD rats: 31.7% and EHBR: 4.3%). Remarkably, a transient increase in the bile flow ( approximately 2-fold) and a slight increase in the total biliary bilirubin excretion were observed in SD rats but not in the EHBR after PCG administration. This suggests that the biliary excretion of PCG and its choleretic effect are Mrp2-dependent. Positive correlations were observed between the biliary excretion rate of PCG and bile flow (r(2) = 0.768) and more remarkably between the biliary excretion rate of GSH and bile flow (r(2) = 0.968). No ATP-dependent uptake of [(3)H]PCG was observed in Mrp2-expressing Sf9 membrane vesicles, whereas other forms of Mrp2-substrate transport were stimulated in the presence of PCG. GSH efflux mediated by human MRP2 expressed in Madin-Darby canine kidney II cells was enhanced in the presence of PCG in a concentration-dependent manner. In conclusion, the choleretic effect of PCG is caused by the stimulation of biliary GSH efflux as well as the concentrative biliary excretion of PCG itself, both of which were Mrp2 dependent.  相似文献   

9.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

10.
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.  相似文献   

11.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

12.
13.
Integumentary uptake of [3H]-L-histidine by Nereis succinea was measured in the presence and absence of selected heavy metals and the amino acid L-leucine in 60% artificial seawater (ASW). The time course of 10 microM [3H]-L-histidine uptake into worms over a 60 min incubation was approximately doubled in the presence of 0.5 microM zinc and when calcium in the incubation medium was reduced from 6 mM to 5 microM the stimulatory effect of zinc on amino acid accumulation was reduced and uptake under the latter conditions was approximately half that of the control. Zinc stimulation of [3H]-L-histidine influx was a hyperbolic function of zinc concentration over the range 0 to 50 microM metal and displayed an apparent activation or affinity constant of 385+/-127 nM Zn(2+). The hyperbolic stimulatory effect of 1 microM Zn(2+) on the time course of 10 microM [3H]-L-histidine uptake was abolished in the presence of 25 microM L-leucine, suggesting that this amino acid shared the same transport system as [3H]-L-histidine and acted as a potential competitive inhibitor. Influx of [3H]-L-histidine was a hyperbolic function of external amino acid concentration and displayed an apparent affinity constant (Km) of 23.71+/-5.02 microM and an apparent aximal velocity (J(max)) of 4701+/-449 pmol/g dry wt.x15 min. Addition of 0.5 microM zinc resulted in a four-fold increase in J(max) and a doubling of K(m), suggesting the effect of the metal was mostly on the rate of amino acid transport. [3H]-L-histidine influx was mildly stimulated by Fe(2+) (0.5 microM), but was unaffected by either Ag(+) or Al(3+) (both at 0.5 microM). These results suggest that [3H]-L-histidine uptake into worm integument may take place by the classical Na(+)-independent L-transport system shared by L-leucine and regulated by exogenous calcium and other divalent metal concentrations.  相似文献   

14.
Multidrug resistance protein 1 (MRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily and is capable of conferring resistance to a broad range of chemotherapeutic agents and transporting structurally diverse conjugated organic anions. In this study, we found that substitution of a highly conserved tryptophan at position 1246 with cysteine (W1246C-MRP1) in the putative last transmembrane segment (TM17) of MRP1 eliminated 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport by membrane vesicles prepared from transiently transfected human embryonic kidney cells while leaving the capacity for leukotriene C(4)- and verapamil-stimulated glutathione transport intact. In addition, in contrast to wild-type MRP1, leukotriene C(4) transport by the W1246C-MRP1 protein was no longer inhibitable by E(2)17betaG, indicating that the mutant protein had lost the ability to bind the glucuronide. A similar phenotype was observed when Trp(1246) was replaced with Ala, Phe, and Tyr. Confocal microscopy of cells expressing Trp(1246) mutant MRP1 molecules fused at the C terminus with green fluorescent protein showed that they were correctly routed to the plasma membrane. In addition to the loss of E(2)17betaG transport, HeLa cells stably transfected with W1246C-MRP1 cDNA were not resistant to the Vinca alkaloid vincristine and accumulated levels of [(3)H]vincristine comparable to those in vector control-transfected cells. Cells expressing W1246C-MRP1 were also not resistant to cationic anthracyclines (doxorubicin, daunorubicin) or the electroneutral epipodophyllotoxin VP-16. In contrast, resistance to sodium arsenite was only partially diminished, and resistance to potassium antimony tartrate remained comparable to that of cells expressing wild-type MRP1. This suggests that the structural determinants required for transport of heavy metal oxyanions differ from those for chemotherapeutic agents. Our results provide the first example of a tryptophan residue being so critically important for substrate specificity in a eukaryotic ATP-binding cassette transporter.  相似文献   

15.
Multidrug resistance protein 2 (MRP2) belongs to the ATP binding cassette family of transporters. Its substrates include organic anions and anticancer drugs. We have used transport assays with vesicles derived from Sf9 insect cells overproducing MRP2 to study the interactions of drugs, organic anions, and bile acids with three MRP2 substrates: estradiol-17-beta-d-glucuronide (E217betaG), methotrexate, and glutathione-S-dinitrophenol. Complex inhibition and stimulation patterns were obtained, different from those observed with the related transporters MRP1 and MRP3. In contrast to a previous report, we found that the rate of E217betaG transport by MRP2 increases sigmoidally with substrate concentration indicative of homotropic cooperativity. Half-maximal transport was obtained at 120 microm E217betaG, in contrast to values < 20 microm for MRP1 and 3. MRP2 stimulators, such as indomethacin and sulfanitran, strongly increased the affinity of MRP2 for E217betaG (half-maximal transport rates at 65 and 16 microm E217betaG, respectively) and shifted the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one, without substantially affecting the maximal transport rate. Sulfanitran also stimulated MRP2 activity in cells, i.e. the transport of saquinavir through monolayers of Madin-Darby canine kidney II cells. Some compounds that stimulate E217betaG transport, such as penicillin G or pantoprazole, are not detectably transported by MRP2, suggesting that they allosterically stimulate transport without being cotransported with E217betaG. We propose that MRP2 contains two similar but nonidentical ligand binding sites: one site from which substrate is transported and a second site that regulates the affinity of the transport site for the substrate.  相似文献   

16.
The ATP-binding cassette (ABC) proteins comprise a large superfamily of transmembrane transporters that utilize the energy of ATP hydrolysis to translocate their substrates across biological membranes. Multidrug resistance protein (MRP) 2 (ABCC2) belongs to subfamily C of the ABC superfamily and, when overexpressed in tumor cells, confers resistance to a wide variety of anticancer chemotherapeutic agents. MRP2 is also an active transporter of organic anions such as methotrexate (MTX), estradiol glucuronide (E217betaG), and leukotriene C4 and is located on the apical membrane of polarized cells including hepatocytes where it acts as a biliary transporter. We recently identified a highly conserved tryptophan residue in the related MRP1 that is critical for the substrate specificity of this protein. In the present study, we have examined the effect of replacing the analogous tryptophan residue at position 1254 of MRP2. We found that only nonconservative substitutions (Ala and Cys) of Trp1254 eliminated [3H]E217betaG transport by MRP2, whereas more conservative substitutions (Phe and Tyr) had no effect. In addition, only the most conservatively substituted mutant (W1254Y) transported [3H]leukotriene C4, whereas all other substitutions eliminated transport of this substrate. On the other hand, all substitutions of Trp1254 eliminated transport of [3H]MTX. Finally, we found that sulfinpyrazone stimulated [3H]E217betaG transport by wild-type MRP2 4-fold, whereas transport by the Trp1254 substituted mutants was enhanced 6-10-fold. In contrast, sulfinpyrazone failed to stimulate [3H]MTX transport by either wild-type MRP2 or the MRP2-Trp1254 mutants. Taken together, our results demonstrate that Trp1254 plays an important role in the ability of MRP2 to transport conjugated organic anions and identify this amino acid in the putative last transmembrane segment (TM17) of this ABC protein as being critical for transport of MTX.  相似文献   

17.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transport system has 1,000-fold higher affinity for nucleobases than nucleosides with K(m) values of 2.5 +/- 0.7 microM for [(3)H]adenine, 6.4 +/- 0.5 microM for [(3)H]guanine, 1.1 +/- 0.1 mM for [(3)H]guanosine, and 4.2 +/- 0.5 mM [(3)H]adenosine. The uptake of [(3)H]guanine (0.05 microM) was inhibited by other nucleobases and nucleobase analog drugs (at 0.5-1 mM in the order of potency): 6-mercaptopurine = thioguanine = guanine > adenine > thymine = fluorouracil = uracil. Cytosine and methylcytosine had no effect. Nucleoside analog drugs with modification at 2' and/or 5 positions (all at 1 mM) were more potent than adenosine in competing the uptake of [(3)H]guanine: 2-chloro-2'-deoxyadenosine > 2-chloroadenosine > 2'3'-dideoxyadenosine = 2'-deoxyadenosine > 5-deoxyadenosine > adenosine. 2-Chloro-2'-deoxyadenosine and 2-chloroadenosine inhibited [(3)H]guanine uptake with IC(50) values of 68 +/- 5 and 99 +/- 10 microM, respectively. The nucleobase/nucleoside transporter was resistant to nitrobenzylthioinosine {6-[(4-nitrobenzyl) thiol]-9-beta-D-ribofuranosylpurine}, dipyridamole, and dilazep, but was inhibited by papaverine, the organic cation transporter inhibitor decynium-22 (IC(50) of approximately 1 microM), and by acidic pH (pH = 5.5). In conclusion, we have identified a mammalian purine-selective nucleobase/nucleoside transporter with high affinity for purine nucleobases. This transporter is potentially important for transporting naturally occurring purines and purine analog drugs into cells.  相似文献   

18.
Multidrug resistance-associated protein 3 (Mrp3/ABCC3), which can mediate the cellular extrusion of bile acids, is induced on the hepatic sinusoidal membrane of Mrp2/ABCC2-deficient rats (Eisai hyperbilirubinemic rats; EHBRs) and phenobarbital-treated Sprague-Dawley rats. In the present study, the correlation between the sinusoidal efflux clearance (PS(eff)) of [3H]taurocholate (TC) and the hepatic expression of Mrp3 was investigated using perfused liver from these rats. A significant correlation was observed between the PS(eff) and the hepatic expression level of Mrp3, suggesting a contribution by Mrp3 to the sinusoidal efflux of TC. The results of the kinetic analysis also suggested that other transporter(s) on the sinusoidal plasma membrane may participate in the efflux of TC under physiological conditions. The contribution of Mrp3 to the sinusoidal efflux of TC in EHBRs and phenobarbital (80 and 40 mg/kg)-treated rats was revealed to be 58%, 48%, and 31%, respectively.  相似文献   

19.
The transport characteristics of fluorescein methotrexate (F-MTX) were studied by using the rat intestinal crypt cell line IEC-6. Enhanced accumulation of F-MTX at 4 degrees C suggests the existence of an active efflux system. MK-571, an inhibitor of the multidrug resistance-associated protein/ATP binding cassette C (MRP/ABCC) family, also enhanced the accumulation of F-MTX. Transcellular transport of F-MTX from the apical to the basolateral compartment was 2.5 times higher than the opposite direction. This vectorial transport was also reduced by MK-571, indicating the presence of Mrp-type transporter(s) on the basolateral membrane. Mrp3 mRNA was readily detectable, and the protein was localized on the basolateral membrane. Uptake of FMTX into membrane vesicles from IEC-6 cells and Spodoptera frugiperda-9 cells expressing rat Mrp3 were both ATP dependent and saturable as a function of the F-MTX concentration. Similar Km values (11.0 +/- 1.8 and 4.5 +/- 1.1 microM) and inhibition profiles by MK-571, estradiol-17beta-d-glucuronide, and taurocholate for the ATP-dependent transport of F-MTX into these vesicles were obtained. These findings suggest that the efflux of F-MTX is mediated by Mrp3 on the basolateral membrane of IEC-6 cells.  相似文献   

20.
Adenosine (ADO), an endogenous regulator of coronary vascular tone, enhances vasorelaxation in the presence of nucleoside transport inhibitors such as dipyridamole. We tested the hypothesis that coronary smooth muscle (CSM) contains a high-affinity transporter for ADO. ADO-mediated relaxation of isolated large and small porcine coronary artery rings was enhanced 12-fold and 3.4-fold, respectively, by the transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI). Enhanced relaxation was independent of endothelium and was selective for ADO over synthetic analogs. Uptake of [(3)H]ADO into freshly dissociated CSM cells or endothelium-denuded rings was linear and concentration dependent. Kinetic analysis yielded a maximum uptake (V(max)) of 67 +/- 7.0 pmol. mg protein(-1). min(-1) and a Michaelis constant (K(m)) of 10. 5 +/- 5.8 microM in isolated cells and a V(max) of 5.1 +/- 0.5 pmol. min(-1). mg wet wt(-1) and a K(m) of 17.6 +/- 2.6 microM in intact rings. NBTI inhibited transport into small arteries (IC(50) = 42 nM) and cells. Analyses of extracellular space and diffusion kinetics using [(3)H]sucrose indicate the V(max) and K(m) for ADO transport are sufficient to clear a significant amount of extracellular adenosine. These data indicate CSM possess a high-affinity nucleoside transporter and that the activity of this transporter is sufficient to modulate ADO sensitivity of large and small coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号