首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
3.
Sea urchin (S. purpuratus) histone DNA of constructed plasmid chimeras cloned in E. coli was cleaved with the restriction endonucleases Eco RI, Hind III, Sal I, Bam I, and Hha I. The resulting fragments were ordered and isolated directly from agarose gels or cloned into other plasmids. Each fragment hybridized to one or another of the five histone mRNAs and elucidated the order of the histone genes in each of the cloned fragments. Some DNA did not hybridize to histone mRNAs and was identified as spacer DNA located between coding regions.Total sea urchin DNA was cleaved with restriction endonucleases, fractionated on agarose gels, and hybridized to histone mRNAs or histone DNA. The results revealed the order of the five histone genes in the histone gene repeat unit and demonstrate that the histone spacer DNAs have little sequence homology to other genes. Exonuclease III digestion of specific linear chimeric histone DNA plasmids followed by hybridization with mRNAs demonstrated the existence of all five histone genes on one strand of DNA and the 5′-3′ polarity of that strand. These results, in conjunction with the data of Wu et al. (1976), allow us to construct a map of coding and spacer sequences in the transcribed strand of the S. purpuratus histone gene repeat unit:
  相似文献   

4.
5.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

6.
We report the cloning and characterization of a histone gene cluster of the newt Notophthalamus viridescens. Fragments containing newt histone genes were identified in whole genome Southern blots; these fragments were cloned into a bacteriophage lambda cloning vector constructed for this purpose. The positions of most of the histone genes were determined by hybridizing subcloned sea urchin histone genes to digests of the cloned newt gene cluster. The position of each gene was verified, and its polarity determined by sequencing a portion of each. The order of the genes in the cloned segment is H1-H3-H2B-H2A-H4, with each of the genes but H2B being transcribed in the same direction. Subcloned segments of the histone gene repeat were used to determine the size of each newt oocyte histone mRNA.  相似文献   

7.
8.
The only eukaryotic mRNAs that are not polyadenylated are the replication-dependent histone mRNAs in metazoans. The sea urchin genome contains two sets of histone genes that encode non-polyadenylated mRNAs. One of these sets is a tandemly repeated gene cluster with a 5.6-kb repeat unit containing one copy of each of the five alpha-histone genes and is present as a single large cluster which spans over 1 Mb. There is a second set of genes, consisting of 39 genes, containing two histone H1 genes, 34 genes encoding core histone proteins (H2a, H2b, H3 and H4) and three genes expressed only in the testis. Unlike vertebrates where these genes are clustered, the sea urchin late histone genes, expressed in embryos, larvae and adults, are dispersed throughout the genome. There are also genes encoding polyadenylated histone mRNAs, which encode histone variants, including all variants found in other metazoans, as well as a unique set of five cleavage stage histone proteins expressed in oocytes. The cleavage stage histone H1 is the orthologue of an oocyte-specific histone H1 protein found in vertebrates.  相似文献   

9.
The genes coding for the H3 and H4 histones of Saccharomyces cerevisiae have been isolated by recombinant DNA cloning. The genes were detected in a bacteriophage lambda library of the yeast genome by hybridization with plasmids containing the cloned Psammechinus miliaris sea urchin histone genes (pCH7) and the cloned Drosophila histone genes (cDM500). Two non-allelic sets of the H3 and H4 genes have been isolated. Each set consists of one H3 gene and one H4 gene arranged as a divergently transcribed pair separated by an intergene spacer DNA. The histone genes were located on the cloned yeast fragments by S1 nuclease mapping, as was a gene (SMT1) of unknown function that does not code for a histone but is closely linked to one of the histone sets. Sequence homology between the two non-allelic sets is confined to the coding regions of the respective genes while the flanking DNA and intergene spacer DNA are extensively divergent. Cellular RNA homologous to the histone genes, including transcribed non-coding sequences unique to each of the four genes, was detected by S1 mapping, thus demonstrating that all four genes are transcribed in vegetative cells.  相似文献   

10.
The relative positions of the sea urchin histone genes and the spacer regions on the chimeric plasmids pSp2 and pSp17 have been mapped by hybridizing total histone messenger RNA to single strands of the plasmid DNAs. The lengths and spacing between the several RNA:DNA duplex regions on the single strands of DNA were measured by the gene 32-ethidium bromide electron microscope mapping method. We find that the genes are interdigitated with spacer sequences of different lengths; that there are three coding sequences on pSp2, all on the same strand, with the relative order H1, H4, and B4; and that there are two coding sequences on pSp17, both on the same strand, corresponding to the messages denoted B1 and B2–B3, where B4, B1, and B2–3 are electrophoretically resolved components of histone mRNA, all of size intermediate between the larger H1 and the smaller H4 message.  相似文献   

11.
12.
13.
Genomic organization and nucleotide sequences of two corn histone H4 genes   总被引:6,自引:0,他引:6  
The sea urchin histone H4 gene has been used as a probe to clone two corn histone H4 genes from a lambda gtWES X lambda B corn genomic library. The nucleotide (nt) sequences of both genes showed that the encoded amino acid sequences were identical to that of the H4 of pea and one variant of wheat. The nt sequences of the coding regions showed 92% homology. 5'- and 3'-flanking regions do not show extensive nt sequence analogies. Southern blotting of the EcoRI digested genomic DNA suggests the existence of multiple H4 genes dispersed throughout the genome.  相似文献   

14.
We present a detailed picture of the disposition of core and H1 histone genes in the chicken genome. Forty-two genes were located within four nonoverlapping regions totalling approximately 175 kilobases and covered by three cosmid clones and a number of lambda clones. The genes for the tissue-specific H5 histone and other variant histones were not found in these regions. The longest continuous region mapped was 67 kilobases and contained 21 histone genes in five dissimilar clusters. No long-range repeat was evident, but there were preferred associations, such as H1 genes with paired, divergently transcribed H2A-H2B genes and H3-H4 associations. However, there were exceptions, and even when associations such as H1-H2A-H2B we maintained, the order of those genes within a cluster may not have been. Another feature was the presence of three (unrelated) clusters in which genes were symmetrically ordered around central H3 genes; in one such cluster, the boundaries of a duplicated H2A-H4 gene pair contained related repeat sequences. Despite the dispersed nature of chicken histone genes, the number of each type was approximately equal, being represented as follows: 6 H1, 10 H2A, 8 H2B, 10 H3, and 8 H4.  相似文献   

15.
Interspersion of histone and 5S RNA genes in Artemia   总被引:4,自引:0,他引:4  
Four recombinant lambda phage containing histone genes were selected from a library of Artemia genomic DNA fragments. The histone gene organization of Artemia resembles that of other invertebrates in that all five genes are clustered and repeated in tandem with approximate repeat lengths of 8.5 kb and 9.3 kb. Each recombinant lambda phage isolate hybridizes with five histone mRNAs and unexpectedly also with 5S ribosomal RNA. Hybridization kinetics have shown the number of histone genes to be about 95-100 copies per haploid genome. An identical number of copies was determined for a hybridization probe containing the 5S gene but no histone genes. We have not found any evidence for a separate set of repeated 5S genes outside this histone + 5S block.  相似文献   

16.
R H Cohn  L H Kedes 《Cell》1979,18(3):855-864
The linear arrangement and lengths of the spacers and coding regions in the two nonallelic histone gene variant clusters of L. pictus are remarkably homologous by R loop analysis and are similar in general topography to the histone gene repeat units of other sea urchins examined to date. No interventing sequences were detected. The coding regions of these two histone gene variants share considerable sequence homology; however, there are areas of nonhomology in every spacer region and the lengths of the nonhomologous spacers between the H2A and H1 genes are not the same for the two repeat unit classes (inter-gene heterogeneity). Combining length measurements obtained with both R loops and heteroduplexes suggests that the DNA sequences of the analogous leader regions for the two H1 mRNAs are nonhomologous. Similar observations were made for the H4 leader sequences, as well as the trailer region on H2B. S. purpuratus spacer DNA segments share little sequence homology with L. pictus; however, the analgous coding (and possibly flanking) regions have conserved their sequences. The various coding and spacer regions within a repeat unit do not share DNA sequences. Thus certain areas in the sea urchin histone gene repeat units have been highly conserved during evolution, while other areas have been allowed to undergo considerable sequence change not only between species but within a species.  相似文献   

17.
Histone DNA sequences, were detected in Eco RI fragments of total Xenopus laevis DNA, by hybridization with 32P-labeled h22-DNA, a histone gene repeat unit of the sea urchin Psammechinus miliaris. The about 6 kb-size class, which was found to hybridize, was subsequently integrated into the E. coli plasmid pCR1. A clone was isolated that contains a 5.8 kb EcoRI fragment hybridizing with h22-DNA. A physical map was constructed using the restriction endonucleases BamHI, PstI, HincII, BglII, XbaI, PvuII, XhoI, AvaI, SmaI, HinfI and HpaII. The fragment was not cleaved by KpnI, AvaI, SalI and HindIII. Using this restriction map we were able to determine the gene order by hybridization with purified gene probes derived from h22-DNA. The gene order was found to be H3, H4, H2A and H2B. The localization of the H1 gene was not possible, probably due to its greater evolutionary divergence. Part of the sequence of the H3-gene is presented providing unambiguous evidence on the identity, map position and polarity of this gene.  相似文献   

18.
19.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号