首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transgenic mice were generated which carried the adult alpha and beta-globin genes and the major tadpole specific beta-globin gene of Xenopus laevis. The adult specific alpha and beta genes were found to express in erythroid tissues in adult mice, while the major tadpole specific beta gene (beta T1) was expressed in blood from 12.5 day embryos. The pattern of expression of the beta T1 gene during mouse development was consistent with its being regulated as an embryonic globin gene in the mouse. This observation suggests that some of the factors mediating globin switching have been conserved during the evolution of modern amphibia and mammals and raises interesting questions concerning the evolution of vertebrate globin gene switching.  相似文献   

2.
We have isolated cDNA clones derived from three tadpole alpha-globin mRNAs of Xenopus laevis. The entire nucleotide sequence of the three mRNAs has been determined from the cDNA clones and is presented together with the deduced amino acid sequence of the encoded polypeptides. Two of the three polypeptide sequences are 96% homologous whilst the third sequence is highly diverged, with only a 72% homology. The three tadpole alpha-globin genes are all similarly diverged from the two X. laevis adult alpha-globin genes with which they display approximately 50% homology. Analysis of several independent clones from each class of tadpole alpha-globin sequence reveals a very high degree of coding region polymorphism for each of the three corresponding genes. Using the cloned DNA sequences as hybridisation probes, we have analysed the expression of the corresponding genes during larval development. We show that all three genes are activated simultaneously early in development and that thereafter all three are expressed at an approximately equivalent level. A fourth tadpole alpha-globin mRNA sequence, for which we do not have a cDNA clone, accumulates co-ordinately with the three major mRNA sequences but to a much lower concentration. This pattern of gene expression differs significantly from that of the tadpole beta-globin genes of X. laevis, despite the two classes of genes being closely linked in the genome.  相似文献   

3.
We report the cloning of a novel gene (ID14) and its expression pattern in tadpoles and adults of Xenopus laevis. ID14 encodes a 315-amino acid protein that has a signal peptide and a nidogen domain. Even though several genes have a nidogen domain, ID14 is not the homolog of any known gene. ID14 is a late thyroid hormone (TH)-regulated gene in the tadpole intestine, and its expression in the intestine does not begin until the climax of metamorphosis, correlating with adult intestinal epithelial differentiation. In contrast, ID14 is expressed in tadpole skin and tail and is not regulated by TH. In situ hybridization revealed that this putative extracellular matrix protein is expressed in the epithelia of the tadpole skin and tail and in the intestinal epithelium after metamorphosis. In the adult, ID14 is found predominantly in the intestine with weak expression in the stomach, lung, and testis. Its exclusive expression in the adult intestinal epithelial cells makes it a useful marker for developmental studies and may give insights into cell/cell interactions in intestinal metamorphosis and adult intestinal stem cell maintenance.  相似文献   

4.
Adult erythrocytes of X. laevis contain six electrophoretically resolvable globin polypeptides while tadpole erythrocytes contain four polypeptides, none of which comigrates with an adult protein. We show that three of the adult proteins are alpha globin polypeptides (alpha 1, alpha 2, alpha 3) and three are beta globin polypeptides (beta 1, beta 2, beta 3). We find that a tadpole alpha globin gene (alpha T1) is linked to the major adult locus in the sequence 5'-alpha T1-alpha 1-beta 1-3' with 5.2 kb separating alpha T1 from alpha 1. Another tadpole alpha globin gene (alpha T2) is linked to the minor adult locus in the sequence 5'-alpha T2-alpha 2-beta 2-3' with 10.7 kb separating alpha T2 from alpha 2. These linkage relationships are consistent with the major and minor loci having arisen by tetraploidization but the different separation of larval and adult globin genes at the two loci indicates the occurrence of some additional chromosomal rearrangement. Two alternative models are presented.  相似文献   

5.
6.
Xenopus laevis transthyretin (xTTR) cDNA was cloned and sequenced. The derived amino acid sequence was very similar to those of other vertebrate transthyretins (TTR). TTR gene expression was observed during metamorphosis in X. laevis tadpole liver but not in tadpole brain nor adult liver. Recombinant xTTR was synthesized in Pichia pastoris and identified by amino acid sequence, subunit molecular mass, tetramer formation, and binding to retinol-binding protein. Contrary to mammalian xTTRs, the affinity of xTTR was higher for L-triiodothyronine than for L-thyroxine. The regions of the TTR genes coding for the NH(2)-terminal sections of the polypeptide chains of TTR seem to have evolved by stepwise shifts of mRNA splicing sites between exons 1 and 2, resulting in shorter and more hydrophilic NH(2) termini. This may be one molecular mechanism of positive Darwinian evolution. Open reading frames with xTTR-like sequences in the genomes of C. elegans and several microorganisms suggested evolution of the TTR gene from ancestor TTR gene-like "DNA modules." Increasing preference for binding of L-thyroxine over L-triiodothyronine may be associated with evolving tissue-specific regulation of thyroid hormone action by deiodination.  相似文献   

7.
8.
Efforts to characterize the mechanisms underlying early lung development have been confounded by the absence of a model that permits study of lung development prior to the onset of endodermal differentiation. Since Xenopus laevis development occurs in an extrauterine environment, we sought to determine whether the classical molecular markers of lung development and function, surfactant protein genes, are expressed in X. laevis. Surfactant protein C (SP-C) is a specific marker for lung development, expressed early in development and exclusively in the lung. Surfactant protein B (SP-B) expression is essential for life, as its absence results in neonatal death in mice and gene mutations have been associated with neonatal respiratory failure in humans. Here, we report the cloning of the first non-mammalian SP-C and SP-B genes (termed xSP-C and xSP-B) using the Xenopus model. The processed mature translated regions of both xSP-C and xSP-B have high homology with both human and mouse genes. xSP-C and xSP-B are both expressed throughout the lung of the X. laevis swimming tadpoles soon after the initiation of lung development as assessed by RT-PCR and whole mount in situ hybridization. The temporal expression patterns of xSP-C and xSP-B are consistent with the expression patterns in mammalian models of lung development. In both the tadpole and the adult X. laevis, xSP-C and xSP-B are expressed only in lung. Knowledge of the sequence and expression pattern of these two surfactant proteins in Xenopus might allow for use of this organism to study early lung development.  相似文献   

9.
Rodent gamma-crystallin promoters were recognized as lens-specific promoters in micro-injected Xenopus laevis tadpoles and targeted the expression of the chloramphenicol acetyl transferase (CAT) reporter gene to the tadpole lens. The onset of expression coincided with lens cell formation. The level of expression continued to increase up to 9 days of development (stage 47), stayed at that level till at least day 13 and dropped by only 57% at day 21. In contrast, the level of expression of a non-tissue-specific promoter, the SV40 early promoter, decreased rapidly in the eye during development and was only detectable up to stage 44 (day 5). The stability of the CAT activity in the lens was assessed by delivering a pulse of activity from a heat shock promoter-CAT fusion gene. The half-life of the CAT activity in the eye was the same as that in the tail. The increase in CAT activity in the lens thus depends upon continued activity of the injected gamma-crystallin promoters. Our data demonstrate that mammalian promoters can be used to target gene expression to specific tissues during Xenopus laevis development.  相似文献   

10.
We injected circular forms of several different DNAs into fertilized eggs of Xenopus laevis, and studied the persistence and expression of the injected DNAs during early embryonic development. When we injected plasmids which contained Drosophila amylase genes, the copy number of the injected DNA increased only slightly during cleavage, started to decrease at the blastula stage, then became very small at the tadpole stage. In such embryos, Drosophila amylase activity was detected at and after the gastrula stage. When we injected other kinds of circular DNAs (pX1r101A, cDm2055, pII25.1, pBR322, and pSP-64-L14), their copy number did not increase throughout the early stages. When circular plasmids that contained bacterial chloramphenicol acetyltransferase (CAT) genes were injected, their copy number usually did not increase, but sometimes, for unknown reasons, it increased extensively throughout the blastula to gastrula stages. In both cases, CAT enzyme activity started to be expressed during the blastula to gastrula stages and disappeared at the 2 day-old tadpole stage. The level of CAT enzyme activity was roughly proportional to the amount of CAT mRNA formed, and also to the copy number of injected genes. From these results, we concluded that in Xenopus embryos, exogenously-injected circular DNAs are preserved for the most part as circular DNAs, and that the increase in their copy number within the embryos is not prerequisite for the expression of their genetic information.  相似文献   

11.
A circular rDNA-containing recombinant plasmid, pXlr101A, and its vector pBR322 were microinjected into the cytoplasm of fertilized Xenopus laevis eggs. The DNAs extracted from injected embryos at various stages of development were analyzed by hybridization with 32P-labeled pBR322 as the probe. Neither pXlr101A nor pBR322 were replicated, but they were maintained until the tailbud stage, disappearing during the muscular response stage. When pXlr101A-injected embryos were raised until the 2-week-old tadpole stage, sequences homologous to pBR322 were detectable in two Eco RI fragments of the pXlr101A-injected tadpole DNA. The sizes of the Eco RI fragments suggested that the plasmid sequences were preserved most probably in the chromosome-integrated form.  相似文献   

12.
This report describes the isolation and characterization of genomic and cDNA clones which define a subfamily of type I keratins in Xenopus laevis whose expression is restricted to embryonic and larval stages. The XK81 subfamily, named after the prototype cDNA clone DG81, contains four members arranged in two pairs of closely homologous loci; they were named 81A1, A2, B1, and B2. Genomic clones were obtained representing all of these regions. The A1 gene has been completely sequenced together with approximately 1 kb of flanking sequences at each end; this gene corresponds to the previously reported cDNA clone 8128 (Jonas, E., T. D. Sargent, and I. B. Dawid, 1985, Proc. Natl. Acad. Sci. USA, 82:5413-5417). The B2 gene is represented by a partial cDNA clone, DG118. Upstream sequences and about half of the coding regions have been sequenced for the B1 and B2 genes, whereas the A2 locus has been identified on the basis of hybridization data and could be a gene or pseudogene. Genomic Southern blotting indicates that all members of the subfamily have been isolated. The keratin proteins encoded by the B1 and B2 genes are 96% homologous in the central rod domain, whereas A/B gene homology in this region is 81%. During development mRNAs derived from A and B genes accumulate coordinately during gastrula and neurula stages; in the tadpole, 81A mRNA decays rapidly, whereas 81B mRNA shows a second abundance peak, persists for most of tadpole life, and decays by metamorphosis. RNAs derived from the XK81 keratin subfamily are undetectable in the adult, where different type I keratin genes are expressed.  相似文献   

13.
The amphibian gastrointestinal tract is remodeled from a larval-type to an adult-type during metamorphosis. In the present study, we examined the products of subtractive hybridization between tadpole and frog stomach cDNAs of Xenopus laevis in order to identify genes expressed specifically in the larval stomach epithelium. A new gene homologous to xP1 was obtained and named xP1-L. In the genome database of Silurana tropicalis, we found a homologue of xP1-L and named it stP1-L. RT-PCR showed that the expression of xP1-L was detected in stage 41/42 tadpoles. In addition, in situ hybridization showed that xP1-L was localized to surface mucous cells of the larval stomach. The H(+)/K(+)-ATPase beta subunit, a marker gene for manicotto gland cells in the tadpole stomach, was also detected at the same time. However, adult marker genes such as xP1 for surface mucous cells and pepsinogen C (PgC) for oxynticopeptic cells were not expressed in the tadpole stages. The expression of xP1-L gradually decreased towards the metamorphic climax and disappeared after stage 61 when larval-type gastric epithelium is replaced by adult-type. We found that xP1-L was never expressed in surface mucous cells of the adult-type stomach, and xP1, instead of xP1-L, was expressed. During T3-induced metamorphosis, xP1-L expression decreased in the same manner as during natural metamorphosis. Thus, xP1-L is a useful marker for larval surface mucous cells in tadpole stomach. This is the first demonstration of a marker gene specific for the surface mucous cells of the larval stomach.  相似文献   

14.
Two different genes of peroxiredoxin 6 are encoded in the genome of Xenopus laevis: xen1 (Acc.no. EMBL Data Bank - BCO54278) and xen2 (Acc.no. EMBL Data Bank - BC540309). Both genes were cloned and expressed in Escherichi coil. Proteins were purified and analyzed. The amino acid sequences of the enzymes Xen1 and Xen2 are 95% identical with the same peroxidase activity, pH and temperature optimums, as well as thermostability, being approximately equal. The expression of peroxiredoxin 6 genes significantly differ during ontogenesis of X. laevis. The expression of xen1 starts on a later stage of development 47-48, while the gene xen2 is expressed on all stages of development with the same increase starting from stage 0-5. The level of xen2 expression in embryos increased after incubation in presence of hydrogen peroxide. The comparison of amino acid sequences of proteins Xen1 and Xen2 shows that only the enzyme Xen2 may have phospholipase activity, since it has residues of phospholipase A2 active center: Ser31, His25, Asp139.  相似文献   

15.
The recent development of transgenic methods for the frog Xenopus laevis provides the opportunity to study later developmental events, such as organogenesis, at the molecular level. Our studies have focused on the development of the tadpole gut, where tissue specific promoters have yet to be identified. We have used mammalian promoters, for the genes elastase, pancreatic duodenal homeobox-1, transthyretin, and intestinal fatty acid binding protein to drive green fluorescent protein expression in live tadpoles. All of these were shown to drive appropriate tissue specific expression, suggesting that the molecular mechanisms organising the gut are similar in amphibians and mammals. Furthermore, expression from the elastase promoter is initiated in the pancreatic buds before morphological definition becomes possible, making it a powerful tool for the study of pancreatic determination.  相似文献   

16.
17.
克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1—3基因在发育的脑和眼中的表达图式。序列比对分析显示Sox1—3蛋白在其HMG框结构域具有高度的保守性。通过RT-PCR方法分析了Sox1基因在爪蟾早期不同发育时段的表达情况,结果显示Sox1基因从未受精卵到尾芽期均有表达,但表达强度有所差异。原位杂交结果显示,在早期卵裂阶段和囊胚期,Sox1基因主要在动物极表达;从神经板期开始,Sox1基因主要在中枢神经系统和眼原基中表达。在蝌蚪期,Sox1与Sox2、Sox3在脑部和眼睛的表达区域有所不同。对于爪蟾Sox1基因时空表达图式的研究将有助于阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。  相似文献   

18.
19.
20.
Global gene expression profiling and cluster analysis in Xenopus laevis   总被引:4,自引:0,他引:4  
We have undertaken a large-scale microarray gene expression analysis using cDNAs corresponding to 21,000 Xenopus laevis ESTs. mRNAs from 37 samples, including embryos and adult organs, were profiled. Cluster analysis of embryos of different stages was carried out and revealed expected affinities between gastrulae and neurulae, as well as between advanced neurulae and tadpoles, while egg and feeding larvae were clearly separated. Cluster analysis of adult organs showed some unexpected tissue-relatedness, e.g. kidney is more related to endodermal than to mesodermal tissues and the brain is separated from other neuroectodermal derivatives. Cluster analysis of genes revealed major phases of co-ordinate gene expression between egg and adult stages. During the maternal-early embryonic phase, genes maintaining a rapidly dividing cell state are predominantly expressed (cell cycle regulators, chromatin proteins). Genes involved in protein biosynthesis are progressively induced from mid-embryogenesis onwards. The larval-adult phase is characterised by expression of genes involved in metabolism and terminal differentiation. Thirteen potential synexpression groups were identified, which encompass components of diverse molecular processes or supra-molecular structures, including chromatin, RNA processing and nucleolar function, cell cycle, respiratory chain/Krebs cycle, protein biosynthesis, endoplasmic reticulum, vesicle transport, synaptic vesicle, microtubule, intermediate filament, epithelial proteins and collagen. Data filtering identified genes with potential stage-, region- and organ-specific expression. The dataset was assembled in the iChip microarray database, , which allows user-defined queries. The study provides insights into the higher order of vertebrate gene expression, identifies synexpression groups and marker genes, and makes predictions for the biological role of numerous uncharacterized genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号