首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
用焦油紫染色,图像分析及统计学方法比较研究了两种鸣禽栗巫鸟和燕雀发声控制核团的体积差异.结果表明,在发声活动中起重要作用的核团前脑HVc、RA 和X区的体积存在显著的种间差异:发声技巧较高的雄性栗巫鸟的相应核团均相对大于雄性燕雀;而在发声中作用较小的nⅫts及雌性鸣禽的相应所有核团均无显著种间差异. 这一结果表明,发声能力的高低与前脑发声核团的体积直接相关.  相似文献   

2.
鸟类呼吸与发声的神经调控   总被引:4,自引:2,他引:2  
鸟类的发声产生于呼吸过程的呼气相;呼吸与发声中枢控制通路间具有复杂的纤维联系,构成“发声通讯复合体”;前脑的RA是鸣禽协调呼吸与发声的高位中枢;脑干部的DM、nRAm、PBvl、IOS、RVL及Ⅻts等核团参与呼吸肌及鸣肌活动的调节,使呼吸与发声的配合准确、协调。  相似文献   

3.
用常规组织学,HRP 逆行示踪,电生理等方法确定了鸣禽锡嘴雀控制发声的神经核团及这些核团的定位坐标值。锡嘴雀控制发声的神经通路由四级神经核团组成。位于端脑上纹状体腹侧的尾部区域(HVc)是控制鸣禽发声的高位中枢,它发出的神经纤维投射到端脑原纹状体腹内侧的粗核(RA),由 RA 又发出两束纤维,分別投射到中脑丘间核(ICo)和延脑的中间核(IM)。左右侧发声控制神经通路并非严格单侧性,每侧气管鸣管肌群分別受双侧发声中枢的交叉控制。中脑 ICo 在控制发声行为中具有相对独立性。各级发声核团的定位坐标值为,HVc∶p1.3,L/R2.4,H0.8;RA∶1.4,L/R3.2,H6.0;ICo∶p0.3,L/R2.6,H8.5:IM∶P3.1,L/R1.0,H∶7.8。  相似文献   

4.
左明雪  陈刚  彭卫民  曾少举 《生命科学》2000,12(2):60-62,56
鸣禽发声学习的控制系统主要由一条直接神经通路和一条辅助神经通路组成,由前脑控制发声学习的最高中枢HVC、旁嗅叶的X区和巨细胞核外侧部(lMAN)组成的辅助通路,对鸟类发声学习行为的发育和调制具有重要作用。发声控制系统中神经元类型、数量及再生与更替、神经组构及其重组、神经介质和受体的分布等差异,决定了鸣禽在发声学习行为表现的差异以及性双态性。本文对近年鸟类控制发声学习行煌神经生物学机制的进展作了较为  相似文献   

5.
鸣禽是除了人类以外极少数具有发声信号学习能力的动物,其已成为研究运动序列控制和学习记忆神经过程的理想模型。鸣禽端脑中的高级发声中枢(high vocal center)、弓状皮质栎核(robust nucleus of the arcopallium)和脑干中的运动核团构成了控制发声的运动通路。该文对鸣禽端脑发声运动通路的电生理学特性及其在发声控制和鸣唱学习中的作用进行了全面的分析综述。  相似文献   

6.
锡嘴雀和家鸽中脑发声与听觉核团传入联系的比较研究   总被引:3,自引:0,他引:3  
李东风  姜秋波 《动物学报》1991,37(4):383-388
作者采用HRP神经轴突逆行标记的方法对鸣禽锡嘴雀(Coccothraustes coccothraustes)、非鸣禽家鸽(Columba livia domesticus)丘间核内发声与听觉核团的传入联系进行了比较研究。结果表明:丘间核内侧部的背内侧亚核接受来自前脑发声运动核团的传入;外侧部的背外侧亚核接受来自脑干听觉中继核的传人。鸣禽与非鸣禽的两亚核接受下行纤维投射的部位既有共同之处,亦存在着差异。  相似文献   

7.
鸟类鸣叫机理是近年比较活跃的研究领域,已证明可为人类发声机理提供实验模型。本文作者通过自己的研究工作,对鸣禽控制发声的外围和中枢侧向优势作了简要介绍。  相似文献   

8.
鸣禽白腰文鸟前脑发声控制核团的性双态性   总被引:12,自引:0,他引:12  
左明雪  曾少举 《动物学报》1998,44(3):302-307
应用神经示踪、放射免疫测定及组织学方法,对成体鸣禽白腰文鸟前脑发声控制核团的性双态性及血中的睾酮水平进行了研究。结果发现,前脑高级发声中枢、古纹状体粗核和X区三个发声控制核团均存在明显的性双态性,雄性的上述三个发声控制核团体积分别比雌性大5.31、4.01和1.92倍,在三个选定的平面上,雄性个体的前两个核团神经元数量超过雌性,但神经元分布的密度则小于雌性,差异均显著(P〈0.05)。从高级发声中  相似文献   

9.
成年雄性鸣禽的习得性发声信号——长鸣(long call)和鸣唱(song)是由前脑高级发声中枢启动,以及由前脑最后一级输出核团弓状皮质栎核(robust nucleus of the arcopallium,RA)整合输出.RA投射神经元与位于中脑的基本发声中枢丘间复合体背内侧核(dorsomedial nucleus of the intercollicular,DM)形成突触连接.该文采用电损毁与声谱分析相结合的方法,通过依次损毁成年雄性斑胸草雀(Taeniopygia guttata)单侧RA和DM核团,探讨了前脑和中脑对习得性发声的影响.结果提示,RA核团与DM核团共同参与了对雄性斑胸草雀习得性声音的调控,而且这种控制具有右侧优势.  相似文献   

10.
鸟类的发声系统和调控机制   总被引:2,自引:0,他引:2  
鸟类是具有复杂声行为的动物,其拥有特殊的发声器官——鸣管。尽管鸣禽与非鸣禽的发声特性和发声器官解剖学差异较大,但是两者发声运动控制模式相似。文章综述了近年来鸟类呜声研究的新进展,重点比较了呜禽和非鸣禽发声器官的结构功能特点和发声特性调控的异同。作为一种动物模型,鸟类发声系统能为人类语言学习等研究提供借鉴。  相似文献   

11.
Species-typical vocal patterns subserve species identification and communication for individual organisms. Only a few groups of organisms learn the sounds used for vocal communication, including songbirds, humans, and cetaceans. Vocal learning in songbirds has come to serve as a model system for the study of brain-behavior relationships and neural mechanisms of learning and memory. Songbirds learn specific vocal patterns during a sensitive period of development via a complex assortment of neurobehavioral mechanisms. In many species of songbirds, the production of vocal behavior by adult males is used to defend territories and attract females, and both males and females must perceive vocal patterns and respond to them. In both juveniles and adults, specific types of auditory experience are necessary for initial song learning as well as the maintenance of stable song patterns. External sources of experience such as acoustic cues must be integrated with internal regulatory factors such as hormones, neurotransmitters, and cytokines for vocal patterns to be learned and produced. Thus, vocal behavior in songbirds is a culturally acquired trait that is regulated by multiple intrinsic as well as extrinsic factors. Here, we focus on functional relationships between circuitry and behavior in male songbirds. In that context, we consider in particular the influence of sex hormones on vocal behavior and its underlying circuitry, as well as the regulatory and functional mechanisms suggested by morphologic changes in the neural substrate for song control. We describe new data on the architecture of the song system that suggests strong similarities between the songbird vocal control system and neural circuits for memory, cognition, and use-dependent plasticity in the mammalian brain. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 602–618, 1997  相似文献   

12.
There is extensive diversity among the 4000 species of songbirds in different aspects of song behavior, including the timing of vocal learning, sex patterns of song production, number of songs that are learned (i.e., repertoire size), and seasonality of song behavior. This diversity provides unparalleled opportunities for comparative studies of the relationship between the structure and function of brain regions and song behavior. The comparative approach has been used in two contexts: (a) to test hypotheses about mechanisms of song control, and (b) to study the evolution of the control system in different groups of birds. In the first context, I review studies in which a comparative approach has been used to investigate sex differences in the song system, the relationship between the number of song types a bird sings and the size of the song nuclei, and seasonal plasticity of the song control circuits. In the second context, I discuss whether the vocal control systems of parrots and songbirds were inherited from a common ancestor or independently evolved. I also consider at what stage in the phylogeny of songbirds the hormone-sensitive forebrain circuit found in modern birds first evolved. I conclude by identifying directions for future research in which a comparative approach would be productive. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 517–531, 1997  相似文献   

13.
A discrete neural circuit mediates the production of learned vocalizations in oscine songbirds. Although this circuit includes some bilateral pathways at midbrain and medullary levels, the forebrain components of the song control network are not directly connected across the midline. There have been no previous reports of bilateral projections from medullary and midbrain vocal control nuclei back to the forebrain song system, but the existence of such bilateral corollary discharge pathways was strongly suggested by the recent observation that unilateral stimulation of a forebrain song nucleus during singing leads to a rapid readjustment of premotor activity in the contralateral forebrain. In the present study, we used neuroanatomical tracers to demonstrate bilateral projections from (a) the rostral ventrolateral medulla (RVL), which may control respiratory aspects of vocalization, to nucleus uvaeformis (Uva), and (b) the dorsomedial intercollicular nucleus (DM), a midbrain vocal control region, to Uva. Both RVL and DM receive descending projections from the forebrain song nucleus robustus archistriatalis, and Uva projects directly to the forebrain song nuclei interfacialis and high vocal center. We suggest that the bilateral feedback projections from DM and RVL to Uva function to coordinate the two hemispheres during singing in adult songbirds and to convey internal feedback of premotor signals to the forebrain in young birds that are learning to sing. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 27–40, 1998  相似文献   

14.
In songbirds, there is considerable interest in relationships between song structure and the size of the song control system in the forebrain. In male canaries, earlier studies have reported that repertoire size increased with age, and positive correlations were obtained between repertoire size and the volume of song control nuclei such as high vocal center (HVC). Here we investigate whether age has an effect upon both the song structure and the morphology of two song control nuclei [HVC and robustus archistriatalis (RA)] that are important in song production. We recorded songs from an aviary population of 1- and 2-year-old male domesticated canaries. We found that repertoire size, number of sexually attractive (sexy) syllables, and size of song nuclei did not differ between 1- and 2-year-old males. Neither did we find significant correlations between syllable repertoire size and the size of the song control nuclei. However, HVC size was positively correlated with the proportion of sexy syllables in the repertoires of 2-year-old males. Some older males may enhance vocal performance by modifying the control of syllables rather than by increasing repertoire size or neural space.  相似文献   

15.
鸣禽发声器官在鸣啭过程中的功能   总被引:1,自引:0,他引:1  
鸣禽的鸣啭是一种习得行为,与人类的学习过程较为相似.因此鸣禽作为一种动物模型在研究人类学习记忆方面得到广泛的应用.鸣管和鸣肌是鸣禽鸣啭的主要器官,对鸣啭过程起着复杂的调节作用.此外,不同的鸣禽在鸣啭时,其发声器官具有不同的侧别优势.对近年在鸣禽发声器官功能方面的研究进行综述.  相似文献   

16.
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.  相似文献   

17.
Song learning in birds: the relation between perception and production   总被引:8,自引:0,他引:8  
The vocal control system of oscine songbirds has some perplexing properties--e.g. laterality, adult neurogenesis, neuronal replacement--that are not predicted by common views of how vocal learning takes place. Similarly, we do not understand the relation between the direct pathway for the control of learned song and the recursive pathway necessary for song learning. Some of the paradoxes of the vocal system of birds may disappear once the relation between the perception and production of learned vocalizations is better understood. To some extent, perception and production may be two closely related states of a same system.  相似文献   

18.
In some species, such as songbirds, much is known about how the brain regulates vocal learning, production, and perception. What remains a mystery is what regulates the motivation to communicate. European starlings (Sturnus vulgaris) sing throughout most of the year, but the social and environmental factors that motivate singing behavior differ seasonally. Male song is highly sexually motivated during, but not outside of, the breeding season. Brain areas outside the song control system, such as the medial preoptic nucleus (POM) and ventral tegmental area (VTA), have been implicated in regulating sexually motivated behaviors in birds, including song. The present study was designed to explore whether these regions, as well as three song control nuclei [area X, the high vocal center (HVC), and the robust nucleus of the arcopallium (RA)], might be involved differentially in song produced within compared to outside of a breeding context. We recorded the behavioral responses of breeding and nonbreeding condition male starlings to the introduction of a female conspecific. Males did not show context-dependent differences in the overall amount of song sung. However, immunocytochemistry for the protein product of the immediate early gene cFOS revealed a positive linear relationship between the total amount of songs sung and number of cFOS-labeled cells in POM, VTA, HVC, and RA for birds singing during, but not outside of, a breeding context. These results suggest that these regions differentially regulate male song production depending on reproductive context. Overall the data support the hypothesis that the POM and VTA interact with the song control system, specifically HVC and RA, to regulate sexually motivated vocal communication in songbirds.  相似文献   

19.
In songbirds, vocal learning occurs during periods of major cellular and synaptic change. This neural reorganization includes massive synaptogenesis associated with the addition of new neurons into the vocal motor pathway, as well as pruning of connections between song regions. These observations, coupled with behavioral evidence that song development requires NMDA receptor activation in specific song nuclei, suggest that experiences associated with vocal learning are encoded by activity driven, Hebbianlike processes of synaptic change akin to those implicated in many other forms of developmental plasticity and learning. In this review we discuss the hypothesis that develpmental and/or seasonal changes in NMDA receptor function and the availability of new synapses may modulate thresholds for plasticity and thereby define sensitive periods for vocal learning. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 532–548, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号