首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A possible role for G proteins in contributing to the chronic actions of cocaine was investigated in three rat brain regions known to exhibit electrophysiological responses to chronic cocaine: the ventral tegmental area, nucleus accumbens, and locus coeruleus. It was found that chronic, but not acute, treatment of rats with cocaine produced a small (approximately 15%), but statistically significant, decrease in levels of pertussis toxin-mediated ADP-ribosylation of Gi alpha and Go alpha in each of these three brain regions. The decreased ADP-ribosylation levels of the G protein subunits were shown to be associated with 20-30% decreases in levels of their immunoreactivity. In contrast, chronic cocaine had no effect on levels of G protein ADP-ribosylation or immunoreactivity in other brain regions studied for comparison. Chronic cocaine also had no effect on levels of Gs alpha or G beta immunoreactivity in the ventral tegmental area and nucleus accumbens. Specific decreases in Gi alpha and Go alpha levels observed in response to chronic cocaine in the ventral tegmental area, nucleus accumbens, and locus coeruleus are consistent with the known electrophysiological actions of chronic cocaine on these neurons, raising the possibility that regulation of G proteins represents part of the biochemical changes that underlie chronic cocaine action in these brain regions.  相似文献   

2.
Abstract: We developed a rapid and sensitive radioimmunohistochemical method for the quantification of tyrosine hydroxylase (TH) at both the anatomical and cellular level. Coronal tissue sections from fresh-frozen rat brains were incubated in the presence of a TH monoclonal antibody. The reaction was revealed with a 35S-labeled secondary antibody. TH content was quantified in catecholaminergic brain areas by measuring optical density on autoradiographic films or silver grain density on autoradiographic emulsion-coated sections. Regional TH concentrations determined in the locus ceruleus (LC), substantia nigra pars compacta (SNC), and ventral tegmental area (VTA) were significantly increased by 45% after reserpine treatment in the LC but unchanged in the SNC and VTA. Microscopic examination of TH radioimmunolabeling showed a heavy accumulation of silver grains over catecholaminergic cell bodies. In the LC, grain density per cell was heterogeneous and higher in the ventral than in the dorsal part of the structure. After reserpine treatment, TH levels were significantly increased (57%) in the neurons of the LC but not in those of the SNC or VTA. The data support the validity of this radioimmunohistochemical method as a tool for quantifying TH protein at the cellular level and they confirm that TH protein content is differentially regulated in noradrenergic and dopaminergic neurons in response to reserpine.  相似文献   

3.
Daily injections of cocaine or morphine into rodents produces behavioral sensitization such that the last daily injection results in a greater motor stimulant effect than the first injection. To evaluate a role for brain dopamine in behavioral sensitization to cocaine and morphine, tissue slices from the ventromedial mesencephalon (containing dopamine cell bodies), the nucleus accumbens, and striatum (dopamine terminal fields) were obtained from rats pretreated with daily cocaine, morphine, or saline 2-3 weeks earlier. When the tissue slices were depolarized by increasing potassium concentration in the superfusate, the release of endogenous dopamine from the ventromedial mesencephalon of cocaine- and morphine-pretreated rats was significantly decreased. In contrast, the release of dopamine from the nucleus accumbens and striatum was either unaltered or slightly enhanced in rats pretreated with cocaine and morphine. When dopamine was released by amphetamine, a significant decrease in dopamine release from the ventromedial mesencephalon of cocaine-pretreated rats was measured. No other significant changes were measured after amphetamine-induced release. It is postulated that the decrease in dopamine release from the ventromedial mesencephalon of cocaine- and morphine-sensitized rats results in less somatodendritic autoreceptor stimulation, and thereby produces an increase in dopamine neuronal activity.  相似文献   

4.
Cocaine is an inhibitor of dopamine and serotonin reuptake by synaptic terminals and has potent reinforcing effects that lead to its abuse. Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) catalyze the rate-limiting steps in dopamine and serotonin biosynthesis, respectively, and are the subject of dynamic regulatory mechanisms that could be sensitive to the actions of cocaine. This study assessed the effects of chronic cocaine on brain TH and TPH activities. Cocaine was administered (0.33 mg/infusion, i.v.) to rats for 7 days every 8 min for 6 h per day. This administration schedule is similar to patterns of self-administration by rats when given ad libitum access to this dose. This chronic, response-independent administration increased TH enzyme activity in the substantia nigra (30%) and ventral tegmental area (43%). Moreover, TH mRNA levels were also increased (45 and 50%, respectively). In contrast to the enzymatic and molecular biological changes in the cell bodies, TH activity was unchanged in the terminal fields (corpus striaturn and nucleus accumbens). Similarly, TPH activity was increased by 50% in the raphe nucleus (serotonergic cell bodies). In summary, the chronic response-independent administration of cocaine produces increases in the expression of TH mRNA and activity in both the cell bodies of motor (nigrostriatal) and reinforcement (mesolimbic) dopamine pathways. These increases are not manifested in the terminal fields of these pathways.  相似文献   

5.
An improved quantitative immunochemical determination of brain tyrosine hydroxylase (TH) concentrations was designed using direct transfer into nitrocellulose from 20-microns thick brain sections, followed by immunodetection and quantitative radioautography in three reference brain structures (locus ceruleus, substantia nigra, and ventral tegmental area). Results obtained by this methodology were similar to those obtained after extraction and Western blotting of the TH protein in control and reserpine-treated animals. Moreover, this methodology allows the combination of high sensitivity and high anatomical resolution in the study of the distribution of pharmacological effects. The locus ceruleus exhibited a significant posteroanterior distribution of TH protein concentration in control and reserpine-treated animals.  相似文献   

6.
Abstract : The expression of glutamate receptor/subunit mRNAs was examined 3 weeks after discontinuing 1 week of daily injections of saline or cocaine. The level of mRNA for GluR1-4, NMDAR1, and mGluR5 receptors was measured with in situ hybridization and RT-PCR. In nucleus accumbens, acute cocaine treatment significantly reduced the mRNA level for GluR3, GluR4, and NMDAR1 subunits, whereas repeated cocaine reduced the level for GluR3 mRNA. Acute cocaine treatment also reduced the NMDAR1 mRNA level in dorsolateral striatum and ventral tegmental area. In prefrontal cortex, repeated cocaine treatment significantly increased the level of GluR2 mRNA. The GluR2 mRNA level was not changed by acute or repeated cocaine in any other brain regions examined. Repeated cocaine treatment also significantly increased mGluR5 mRNA levels in nucleus accumbens shell and dorsolateral striatum. Functional properties of the ionotropic glutamate receptors are determined by subunit composition. In addition, metabotropic glutamate receptors can modulate synaptic transmission and the response to stimulation of ionotropic receptors. Thus, the observed changes in levels of AMPA and NMDA receptor subunits and the mGluR5 metabotropic receptor may alter excitatory neurotransmission in the mesocorticolimbic dopamine system, which could play a significant role in the enduring biochemical and behavioral effects of cocaine.  相似文献   

7.
Increased glutamate transmission in the nucleus accumbens and ventral tegmental area has been proposed as a mechanism underlying sensitized behavioral responses to repeated cocaine administration. GluR1, GluR2/3, and NMDAR1 subunits of glutamate receptors were quantified from immunoblots in these brain nuclei in rats at 24 h and 3 weeks after discontinuing 1 week of daily cocaine injections. Motor behavior was monitored after the first and last injections of daily cocaine, and those rats that showed >20% increase in motor activity after the last compared with the first injection were considered to have developed behavioral sensitization. The subjects that developed behavioral sensitization showed a significant increase in GluR1 levels in the nucleus accumbens at 3 weeks but not at 24 h of withdrawal. Conversely, sensitized animals showed a significant increase in NMDAR1 and GluR1 levels in the ventral tegmental area at 1 day but not at 3 weeks of withdrawal. None of these increases occurred in the rats exposed to daily cocaine that did not develop behavioral sensitization (<20% increase in motor activity), and no changes were measured in the level of GluR2/3 in any treatment group. The functional importance of the increases in glutamate receptor subunit levels is suggested by the fact that the changes were present only in rats that developed behavioral sensitization to repeated cocaine administration.  相似文献   

8.
Long-Term Effects of RU24722 on Tyrosine Hydroxylase of the Rat Brain   总被引:1,自引:4,他引:1  
The effects of RU24722 (14,15-dihydro-20,21-dinoreburnamine-14-ol) on tyrosine hydroxylase in central catecholaminergic neurons were studied in rats treated with different quantities of the molecule, and a time course was done for the minimal dose that gave the maximal effect. RU24722 induced increases in tyrosine hydroxylase activities and specific protein content in noradrenergic cells of the locus ceruleus and decreased all these parameters in dopaminergic neurons of the substantia nigra and ventral tegmental area. The results pointed out that the specific activity of newly synthesized tyrosine hydroxylase in the loci cerulei was potentially greater but was not expressed "in vivo" except 7 days after injection. The phenotypic specificity and the time course pattern of the action could be considered as a consequence of an induction mechanism. The comparison of long-term change in tyrosine hydroxylase values after piperoxane, RU24722, clonidine, and combined RU24722-clonidine treatment demonstrated that an activation during a few hours did not induce tyrosine hydroxylase in central noradrenergic neurons. Clonidine antagonized the activating effect of RU24722 following its injection but did not affect its long-term induction properties.  相似文献   

9.
Abstract: A subtractive hybridization and differential screening procedure was used to detect up-regulation of cytochrome c oxidase (CO) subunits I, III, and IV mRNA in the nucleus accumbens (NAc) of rats chronically treated with cocaine. Northern blot analyses of mRNA isolated from individual rats confirmed that CO subunit I was up-regulated by chronic, but not acute, cocaine in two brain regions, the NAc (33%) and caudate-putamen (CP)(35%). CO activity, used as a measure of metabolic activity, was increased by 88% in the NAc, and decreased by 20% in the medial prefrontal cortex (mPFC), the day after chronic treatment was terminated. CO enzyme activity was not regulated in the CP, or in other brain regions not involved in drug reward. CO activity in both the NAc and mPFC showed unique time-dependent patterns of regulation during the week after chronic cocaine treatment.  相似文献   

10.
Abstract : Administration of high doses of methamphetamine (METH) produces both short- and long-term enzymatic deficits in central monoaminergic systems. To determine whether a correlative relationship exists between these acute and long-term consequences of METH treatment, in the present study we examined the regional effects of METH on tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities in various regions of the caudate nucleus, nucleus accumbens, and globus pallidus. A single METH administration decreased TPH activity 1 h after treatment in the globus pallidus, in the nucleus accumbens, and throughout the caudate ; in the anterior caudate, the ventral-medial was more affected than the dorsal-lateral region. In contrast, TH activity was not decreased in either the caudate or the globus pallidus after a single METH administration ; however, it was altered in the nucleus accumbens. Seven days after multiple METH administrations, TH and TPH activities were decreased in most caudate regions but not in the nucleus accumbens or globus pallidus. These data demonstrate that (1) the effects of METH on TPH and TH vary regionally ; and (2) the short-term and long-term regional responses of TPH to METH in the caudate and globus pallidus correlated. In contrast, METH-induced acute TH responses did not predict the long-term changes in TH activity.  相似文献   

11.
Chronic nicotine (0.8 mg/kg by daily subcutaneous injection) over a 7 to 28-day period was found to increase the activity of tyrosine hydroxylase in predominantly noradrenergically innervated regions but not in dopaminergic projection areas. Increases in tyrosine hydroxylase activity were observed in dopaminergic cell body regions only after nicotine treatment for 3 to 5 days. The increase in tyrosine hydroxylase activity in noradrenergic neurones was evident first in the cell bodies in the locus coeruleus from 3 to 7 days, reaching 223% of control activities, and was followed by increases of up to 205% in the terminals up to 3 weeks later. It was then established that nicotine for 7 days was sufficient to increase the activity of the enzyme to the same extent in the terminals at 21 days even without further nicotine administration. This is consistent with axonal transport preceded by induction of the enzyme in noradrenergic cell bodies, whereas "delayed activation" might account for the transient effect seen in dopaminergic cell body regions. The response in the locus coeruleus to nicotine for 7 days was completely blocked by daily preinjection with mecamylamine but not with hexamethonium, which is consistent with the effect of nicotine on tyrosine hydroxylase being mediated by central nicotinic receptors.  相似文献   

12.
Abstract Tyrosine hydroxylase (TH, EC 1.14.16.2) from beef brain striata was purified 23-fold from an extract of an acetone powder. If this enzyme preparation is treated with a cyclic AMP-dependent protein phosphorylation system, there is a change in the pH dependence of the enzyme activity. The pH optimum at saturating tetrahydrobiopterin (BH4) concentration is shifted from below pH 6 to about pH 6.7. At pH 7, activation is expressed mainly as an increase in Vmax, whereas at pH 6, activation is expressed mainly as a decrease in Km for the pterin cofactor. Further, even with the control enzyme the Km for pterin cofactor declines precipitously as the pH is increased from 6 toward neutrality. Similar data were obtained with G-25 Sephadex-treated rat striatal TH. Experiments in which rat striatal synaptosomes were used demonstrated that the in situ activation of TH by phosphorylating conditions is expressed primarily as an increase in the maximum rate of dopamine synthesis. These results indicate that changes in TH activity caused by cyclic AMP-dependent protein phosphorylation will depend to a large extent on the pH of the TH environment.  相似文献   

13.
The hypothesis that dopamine (DA) autoreceptors modulate the phosphorylation of tyrosine hydroxylase (TH; EC 1.14.16.2) was investigated in rat striatal slices. Tissue was prelabeled with 32P inorganic phosphate, and TH recovered by immunoprecipitation with anti-TH rabbit serum. The TH monomer was resolved on sodium dodecyl sulfate polyacrylamide gels, and the extent of phosphorylation was determined by scanning densitometry of autoradiographs. Depolarization of striatal slices with 55 mM K+ markedly increased the incorporation of 32P into several proteins, including the TH monomer (Mr = 60,000). A similar increase in TH phosphorylation occurred in response to the adenylate cyclase activator forskolin and the cyclic AMP analog dibutyryl cyclic AMP. An increase in TH phosphorylation was not observed in response to the D1-selective agonist SKF 38393. The D2-selective DA autoreceptor agonist pergolide decreased the phosphorylation of TH below basal levels and blocked the increase in phosphorylation elicited by 55 mM K+. The inhibitory effect of pergolide was antagonized by the D2-selective antagonist eticlopride. Changes observed in the phosphorylation of TH were mirrored by changes in tyrosine hydroxylation in situ. These observations support the hypothesis that a reduction in TH phosphorylation is the mechanism by which DA autoreceptors modulate tyrosine hydroxylation in nigrostriatal nerve terminals.  相似文献   

14.
Abstract: The present study was undertaken to examine the adaptive changes occurring 1 and 6 months after moderate or severe unilateral 6-hydroxydopamine-induced lesions confined to the lateral part of the rat substantia nigra pars compacta (SNC). The expression of tyrosine hydroxylase (TH) enzyme was analyzed in the remaining dopaminergic nigral cell bodies and in the corresponding striatal nerve endings. In the cell bodies of the lesioned SNC, TH mRNA content was increased (+20 to +30%) 6 months after the lesion without changes in cellular TH protein amounts. The depletion of TH protein in the nerve terminal area was less severe than the percentage of cell loss observed in the SNC at 1- and 6-month postlesion intervals. Moreover, the decrease in TH protein in the ipsilateral striatum was less pronounced 6 months after lesion than 1 month after. That no corresponding change in TH protein content was observed in the cell bodies at a time when TH increased in nerve terminals suggests that the newly synthesized protein is probably rapidly transported to the striatal fibers. These results suggest the existence of a sequence of changes in TH expression between cell bodies and fibers, occurring spontaneously after partial denervation of the nigrostriatal pathway.  相似文献   

15.
Neurotrophic signaling pathways have been implicated in the maintenance of the mesolimbic dopamine system, as well as in changes in this system induced by chronic morphine exposure. We found that many of these signaling pathway proteins are expressed at appreciable levels within the ventral tegmental area (VTA) and related regions, although with substantial regional variation. Moreover, phospholipase Cgamma1 (PLCgamma1) was significantly and specifically up-regulated within the VTA by 30% following chronic exposure to morphine. PLCgamma1 mRNA expression is enriched in dopaminergic neurons within the VTA; however, the up-regulation of PLCgamma1 in this region was not seen at the mRNA level. In contrast to PLCgamma1, insulin receptor substrate (IRS)-2, a protein involved in phosphatidylinositol 3-kinase signaling, and another putative IRS-like protein were significantly down-regulated within the VTA by 49 and 45%, respectively. Levels of several proteins within the Ras-ERK pathway were not altered. Regulation of neurotrophic factor signaling proteins may play a role in morphine-induced plasticity within the mesolimbic dopamine system.  相似文献   

16.
Tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD), and choline acetyl transferase (CAT) were used as markers for catecholamine, gamma-aminobutyric acid, and acetylcholine containing neurons in human mesencephalon. Their rostrocaudal, mediolateral, and dorsoventral distribution was investigated within the substantia nigra pars compacta (SNC) and pars reticulata (SNR) and in the ventral tegmental area (VTA). TH activity was highest in the caudal, medial, and ventral SNC and in the middle of VTA medio-ventrally. The enzyme activity in SNR was low and uniformly distributed. In SNC as well as SNR, GAD activity was high and greater laterally and in the middle of the rostro-caudal extent. No particular pattern of distribution was observed in VTA. an area with low GAD content. In the substantia nigra, CAT activity was low. A characteristic medio-ventral distribution with a peak of high enzyme activity in the middle of the rostrocaudal extent was observed. In VTA, enzyme levels were high and also concentrated medio-ventrally and in the middle of the area. In parkinsonian brains, the distribution of TH was uniformly affected throughout the rostro-caudal extent. In VTA the enzyme activity was not as reduced as in SNC and SNR; the CAT pattern was only disrupted in a very localized part of SNC but not in SNR and VTA. In all three areas, GAD activity was reduced to a uniformly low distribution.  相似文献   

17.
Histamine can cause the release of catecholamines from bovine adrenal medullary chromaffin cells by a mechanism distinct from that of the depolarizing agents nicotine or high K+ buffer. It was the aim of this study to determine the protein phosphorylation responses to histamine in these cells and to compare them with those induced by depolarization. A number of proteins showed increases in phosphorylation in response to histamine especially when analyzed on two-dimensional polyacrylamide gel electrophoresis or by phosphopeptide mapping; one protein of 20,000 daltons was markedly dephosphorylated. Emphasis was given to the effects of histamine on tyrosine hydroxylase (TOH) phosphorylation, because this protein showed the most prominent changes on one-dimensional gels. Histamine acted via H1 receptors to increase TOH phosphorylation; the response was blocked by the H1 antagonist mepyramine and could be mimicked by the H1 agonist thiazolylethylamine, but not by the H2 agonist dimaprit. The H3 agonist (R) alpha-methylhistamine increased TOH phosphorylation at high concentrations, but the response was blocked entirely by mepyramine. Histamine rapidly increased the phosphorylation of TOH, with a maximum reached within 5 s and maintained for at least 30 min. This was in marked contrast to nicotine-stimulated protein phosphorylation of TOH, which was rapidly desensitized. The initial phosphorylation response to histamine was independent of extracellular Ca2+ for at least 3 min, but the sustained response required extracellular Ca2+. This was in contrast to the situation with both nicotine and high K+ buffer, which under the conditions used here caused a response which was dependent on extracellular Ca2+ at all times investigated. In the presence of histamine, the phosphopeptide profiles for TOH were essentially the same with or without Ca2+, suggesting that the same protein kinases were involved, but at longer times there was evidence of new phosphorylation sites. The mechanism or mechanisms whereby histamine modulates TOH phosphorylation are discussed with emphasis on the differences from depolarizing agents.  相似文献   

18.
Abstract: The mechanism of the short-term activation by prolactin (PRL) of tyrosine hydroxylase (TH) in tuberoinfundibular dopaminergic neurons was examined in vitro on hypothalamic slices from ovariectomized rats. TH activity (determined by 3,4-dihydroxyphenylalanine accumulation in the median eminence after blockade of decarboxylase with NSD 1055) showed a dose-dependent increase within 2 h of incubation of the hypothalamic slices with PRL. To determine whether a phosphorylation process was involved in this increase in TH activity, we studied the sensitivity of the enzyme to dopamine (DA) feedback inhibition. In control median eminences, two kinetically different forms of TH coexisted, one exhibiting a K 1(DA) value of 29.92 ± 0.49 μ M , the other being × 15-fold more sensitive to DA inhibition with a K 1(DA) of 1.96 ± 0.09 μ M , likely corresponding to a phosphorylated and active form and to a nonphosphorylated and less active form, respectively. After PRL treatment, the TH form of low K 1(DA) remained unaffected, whereas the K 1(DA) of the purported active form of TH increased to 62.6 ± 0.8 μ M , suggesting an increase in the enzyme phosphorylation. This increase in the K I(DA) of TH was selectively prevented by GF 109203X, a potent and selective inhibitor of protein kinase C, but not by a specific inhibitor of protein kinase A or calmodulin. Finally, this action of PRL could be mimicked by 12- O -tetradecan-oylphorbol 13-acetate (a direct activator of protein kinase C). These results suggest that PRL, at the median eminence level, activates TH by increasing the enzyme phosphorylation and that this action may involve an activation of protein kinase C.  相似文献   

19.
20.
Abstract: The short-term inhibition by estradiol of tyrosine hydroxylase (TH) in tuberoinfundibular dopaminergic neurons was examined in vitro on hypothalamic slices from ovariectomized rats. TH activity (determined by L-3,4-di-hydroxyphenylalanine accumulation in the median eminence after blockade of decarboxylase with NSD 1055) showed a 30–40% decrease within 1 h of incubation with estradiol. To determine whether a dephosphorylation process was involved in this decline in TH activity, we studied the sensitivity of the enzyme to dopamine (DA) feedback inhibition: In controls, we observed that two kinetically different forms of TH coexisted, with one exhibiting a Kl(DA) of 26.4 ± 2 μM the other being ∼ 10-fold more sensitive to DA inhibition, with a [k1{DA)] of 2.56 ± 0.17 μM. likely corresponding to a phosphorylated and active form and to a non-phosphorylated and poorly active form, respectively. Conversely. after estradiol treatment all TH molecules exhibited the same K1(DA) of 2.5 ± 0.3 μM. This effect was stereospecific, because 17α-estradiol could not promote it. whereas with 17β-estradiol. it could be observed at only 10−11M and after a short delay (30 min). Finally, this decrease in the K1(DA) of the purported active form of TH could be prevented by okadaic acid (an inhibitor of protein phosphatases). These results suggest that estradiol can act directly on the mediobasal hypothalamus to trigger a rapid decline in TH activity and that this action may involve a decrease in TH phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号