首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

2.
A 55-amino acid segment, normally present between residues 241 and 295 of the 348-residue gene I protein of the filamentous bacteriophage f1, acts as an internal signal sequence for gene I protein or, when present in fusion proteins, for EcoRI endonuclease or alkaline phosphatase. The resulting proteins are inserted so that they span the membrane with sequences on the amino side of the 55-residue segment in the cytoplasm and those near the carboxy side outside the cytoplasmic membrane. The presence of these proteins in the membrane results in the rapid inhibition of cell growth, probably from a loss of the membrane potential. We describe some of the elements in this 55-residue segment that appear to be crucial for its interaction with the membrane.  相似文献   

3.
We have examined the topology of the yeast arginine permease, a plasma-membrane protein with multiple membrane-spanning domains. Using fusions of the permease with the glycosylatable secreted yeast protein, acid phosphatase, we identified membrane-spanning sequences that can translocate adjacent acid phosphatase across the membrane of the endoplasmic reticulum (ER), as measured by in vitro glycosylation. Examination for the presence or absence of glycosylation in a systematic series of such fusions gave an internally consistent model for the lumenal or cytoplasmic disposition of the acid phosphatase reporter, defining the topology of the permease. The phenotypes of a further set of arginine permease gene fusions with portions of the gene for the secreted protein, killer toxin, suggest that the pathways of export of membrane and secreted proteins need not be functionally distinct.  相似文献   

4.
The NHE6 protein is a unique Na(+)/H(+) exchanger isoform believed to localize in mitochondria. It possesses a hydrophilic N-terminal portion that is rich in positively charged residues and many hydrophobic segments. In the present study, signal sequences in the NHE6 molecule were examined for organelle localization and membrane topogenesis. When the full-length protein was expressed in COS7 cells, it localized in the endoplasmic reticulum and on the cell surface. Furthermore, the protein was fully N-glycosylated. When green fluorescent protein was fused after the second (H2) or third (H3) hydrophobic segment, the fusion proteins were targeted to the endoplasmic reticulum (ER) membrane. The localization pattern was the same as that of fusion proteins in which green fluorescent protein was fused after H2 of NHE1. In an in vitro system, H1 behaved as a signal peptide that directs the translocation of the following polypeptide chain and is then processed off. The next hydrophobic segment (H2) halted translocation and eventually became a transmembrane segment. The N-terminal hydrophobic segment (H1) of NHE1 also behaved as a signal peptide. Cell fractionation studies using antibodies against the 15 C-terminal residues indicated that NHE6 protein localized in the microsomal membranes of rat liver cells. All of the NHE6 molecules in liver tissue possess an endoglycosidase H-resistant sugar chain. These findings indicate that NHE6 protein is targeted to the ER membrane via the N-terminal signal peptide and is sorted to organelle membranes derived from the ER membrane.  相似文献   

5.
Synaptobrevin/vesicle-associated membrane protein is one of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is proposed to provide specificity for the targeting and fusion of vesicles with the plasma membrane. It belongs to a class of membrane proteins which lack a signal sequence and contain a single hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the cytoplasm (tail-anchored). We show that in neuroendocrine PC12 cells, synaptobrevin is not directly incorporated into the target organelle, synaptic-like vesicles. Rather, it is first inserted into the endoplasmic reticulum (ER) membrane and is then transported via the Golgi apparatus. Its insertion into the ER membrane in vitro occurs post-translationally, is dependent on ATP and results in a trans-membrane orientation of the hydrophobic tail. Membrane integration requires ER protein(s) different from the translocation components needed for proteins with signal sequences, thus suggesting a novel mechanism of insertion.  相似文献   

6.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

7.
The in vivo membrane assembly of the mannitol permease, the mannitol Enzyme II (IImtl) of the Escherichia coli phosphotransferase system, has been studied employing molecular genetic approaches. Removal of the N-terminal amphiphilic leader of the permease and replacement with a short hydrophobic sequence resulted in an inactive protein unable to transport mannitol into the cell or catalyze either phosphoenol-pyruvate-dependent or mannitol 1-phosphate-dependent mannitol phosphorylation in vitro. The altered protein (68 kDa) was quantitatively cleaved by an endogenous protease to a membrane-associated 39-kDa fragment and a soluble 28-kDa fragment as revealed by Western blot analyses. Overproduction of the wild-type plasmid-encoded protein also led to cleavage, but repression of the synthesis of the plasmid-encoded enzyme by inclusion of glucose in the growth medium prevented cleavage. Several mtlA-phoA gene fusions encoding fused proteins with N-terminal regions derived from the mannitol permease and C-terminal regions derived from the mature portion of alkaline phosphatase were constructed. In the first fusion protein, F13, the N-terminal 13-aminoacyl residue amphiphilic leader sequence of the mannitol permease replaced the hydrophobic leader sequence of alkaline phosphatase. The resultant fusion protein was inefficiently translocated across the cytoplasmic membrane and became peripherally associated with both the inner and outer membranes, presumably via the noncleavable N-terminal amphiphilic sequence. The second fusion protein, F53, in which the N-terminal 53 residues of the mannitol permease were fused to alkaline phosphatase, was efficiently translocated across the cytoplasmic membrane and was largely found anchored to the inner membrane with the catalytic domain of alkaline phosphatase facing the periplasm. This 53-aminoacyl residue sequence included the amphiphilic leader sequence and a single hydrophobic, potentially transmembrane, segment. Analyses of other MtlA-PhoA fusion proteins led to the suggestion that internal amphiphilic segments may function to facilitate initiation of polypeptide trans-membrane translocation. The dependence of IImtl insertion on the N-terminal amphiphilic leader sequence was substantiated employing site-specific mutagenesis. The N-terminal sequence of the native permease is Met-Ser-Ser-Asp-Ile-Lys-Ile-Lys-Val-Gln-Ser-Phe-Gly.... The following point mutants were isolated, sequenced, and examined regarding the effects of the mutations on insertion of IImtl into the membrane: 1) S3P; 2) D4P; 3) D4L; 4) D4R; 5) D4H; 6) I5N; 7) K6P; and 8) K8P.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Summary Various gene fusions between the arginine permease and invertase have been constructed in order to obtain information about whether part of the CAN1 gene product can induce secretion of biologically active invertase missing its own signal sequence. A construction containing 30 N-terminal amino acid residues of the CAN1 gene product fused to invertase was not secreted. When the CAN1 portion was elongated to 477 or 560 amino acid residues, secretion of the fusion proteins was observed. A fusion lacking 59 amino acids at the amino-terminal end of the arginine permease was also secreted. These results indicate that the amino-terminal end of the arginine permease is neither sufficient nor essential for membrane insertion; instead this enzyme should contain an internal targeting sequence facilitating secretion. Some general implications on the biosynthesis and topology of membrane proteins are also discussed as well as the homology with histidine permease.  相似文献   

9.
Human asialoglycoprotein receptor H1 is a single-spanning membrane protein with an amino-terminal domain of 40 residues exposed to the cytoplasm and the carboxyl-terminal domain translocated to the exoplasmic side of the membrane. It has been shown earlier that the transmembrane segment functions as an internal uncleaved signal sequence for insertion into the endoplasmic reticulum. In a deletion protein lacking almost the entire cytoplasmic domain, the signal sequence is cleaved at the carboxyl-terminal end of the transmembrane segment. All available criteria suggest that the protein is processed by signal peptidase. The cytoplasmic domain of the receptor does not directly inhibit signal cleavage since it does not detectably hinder cleavage of the normally amino-terminal signal sequence of influenza hemagglutinin in fusion proteins. We suggest that by its size or structure it affects the position of the receptor in the membrane and thus the accessibility of the potential cleavage site to signal peptidase.  相似文献   

10.
The molecular nature of determinants that mediate degradation of unassembled, polytopic subunits of oligomeric membrane proteins and their stabilization after partner subunit assembly is largely unknown. Expressing truncated Na,K-ATPase alpha subunits alone or together with beta subunits, we find that in unassembled alpha subunits neither the four N-terminal transmembrane segments acting as efficient alternating signal anchor-stop transfer sequences nor the large, central cytoplasmic loop exposes any degradation signal, whereas poor membrane insertion efficiency of C-terminal membrane domains M5, M7, and M9 coincides with the transient exposure of degradation signals to the cytoplasmic side. beta assembly with an alpha domain comprising at least D902 up to Y910 in the extracytoplasmic M7/M8 loop is necessary to stabilize Na,K-ATPase alpha subunits by favoring M7/M8 membrane pair formation and by protecting a degradation signal recognized from the endoplasmic reticulum (ER) lumenal side. Thus our results suggest that ER degradation of Na,K-ATPase alpha subunits is 1) mainly mediated by folding defects caused by inefficient membrane insertion of certain membrane domains, 2) a multistep process, which involves proteolytic and/or chaperone components acting from the ER lumenal side in addition to cytosolic, proteasome-related factors, and 3) prevented by partner subunit assembly because of direct protection and retrieval of degradation signals from the cytoplasm to the ER lumenal side. These results likely represent a paradigm for the ER quality control of unassembled, polytopic subunits of oligomeric membrane proteins.  相似文献   

11.
The N-terminal signal anchor of cytochrome P-450 2C1 mediates retention in the endoplasmic reticulum (ER) membrane of several reporter proteins. The same sequence fused to the C terminus of the extracellular domain of the epidermal growth factor receptor permits transport of the chimeric protein to the plasma membrane. In the N-terminal position, the ER retention function of this signal depends on the polarity of the hydrophobic domain and the sequence KQS in the short hydrophilic linker immediately following the transmembrane domain. To determine what properties are required for the ER retention function of the signal anchor in a position other than the N terminus, the effect of mutations in the linker and hydrophobic domains on subcellular localization in COS1 cells of chimeric proteins with the P-450 signal anchor in an internal or C-terminal position was analyzed. For the C-terminal position, the signal anchor was fused to the end of the luminal domain of epidermal growth factor receptor, and green fluorescent protein was additionally fused at the C terminus of the signal anchor for the internal position. In these chimeras, the ER retention function of the signal anchor was rescued by deletion of three leucines at the C-terminal side of its hydrophobic domain; however, deletion of three valines from the N-terminal side did not affect transport to the cell surface. ER retention of the C-terminal deletion mutants was eliminated by substitution of alanines for glutamine and serine in the linker sequence. These data are consistent with a model in which the position of the linker sequence at the membrane surface, which is critical for ER retention, is dependent on the transmembrane domain.  相似文献   

12.
The ryanodine receptor (RyR) is a large homotetrameric protein with a hydrophobic domain at the C-terminal end that resides in the endoplasmic reticulum (ER) or sarcoplasmic reticulum membrane and forms the conduction pore of a Ca(2+) release channel. Our previous studies showed that RyR expressed in heterologous cells localized to the ER membrane. Confocal microscopic imaging indicated that the ER retention signal is likely present within the C-terminal portion of RyR, a region that contains four putative transmembrane segments. To identify the amino acid sequence responsible for ER retention of RyR, we expressed fusion proteins containing intercellular adhesion molecule (ICAM), various fragments of RyR, and green fluorescent protein (GFP) in Chinese hamster ovary and COS-7 cells. ICAM is a plasma membrane-resident glycoprotein and serves as a reporter for protein trafficking to the cell surface membrane. Imaging analyses indicated that ICAM-GFP fusion proteins with RyR sequence preceding the four transmembrane segments, ICAM-RyR-(3661-3993)-GFP, and with RyR sequence corresponding to transmembrane segments 1, 2, and 3, ICAM-RyR-(4558-4671)-GFP and ICAM-RyR-(4830-4919)-GFP, were localized to the plasma membrane; fusion proteins containing the fourth transmembrane segment of RyR, ICAM-RyR-(4913-4943)-GFP, were retained in the ER. Biochemical assay showed that ICAM-RyR-GFP fusion proteins that target to the plasma membrane are fully glycosylated, and those retained in the intracellular membrane are core-glycosylated. Together our data indicate that amino acids 4918-4943 of RyR contain the signal sequence for ER retention of the Ca(2+) release channel.  相似文献   

13.
Membrane topology of the yeast uracil permease   总被引:1,自引:0,他引:1  
The uracil permease of Saccharomyces cerevisia e is a 633 residue polytopic plasma membrane protein. Hydropathy profile analysis indicates that this protein has long hydrophilic N-and C-termini and 10–12 potential transmembrane segments. Previous results based on analysis of hybrid proteins allowed identification of the first transmembrane segment of uracil permease, and provided a preliminary indication of the cytoplasmic orientation of its N-terminus. In this work, other experimental approaches were used to confirm this orientation, and to determine that of the C-terminus. Epitopes in the N-and the C-termini of the protein were protected against trypsin degradation on intact protoplasts, but readily digested on permeabilized protoplasts. Immunofluorescent analysis showed that antibodies to the last 10 amino acids of uracil permease bind to detergent-treated protoplasts, but not to intact ones. Carboxypeptidase digested the C-terminus of uracil permease inserted into sealed dog-pancreas microsomes. These results establish that both N- and C-termini are cytoplasmic, the permease polypeptide spanning the membrane an even number of times. The orientation of several hydrophilic loops with respect to the membrane was investigated by introducing potential glycosylation sites into these regions. We checked whether the resulting mutant proteins were glycosylated when expressed in the presence of dog-pancreas microsomes. Our data show that two loops of the protein are lumenal. Together with previous results, this work indicates that uracil permease is a 10 membrane-spanning protein, with rather small external loops and three main cytoplasmic regions (the N-and C-termini and a central 60-residue loop).  相似文献   

14.
After integration into the endoplasmic reticulum (ER) membrane, ER-resident membrane proteins must be segregated from proteins that are exported to post-ER compartments. Here we analyze how human Gaa1 and PIG-T, two of the five subunits of the ER-localized glycosylphosphatidylinositol transamidase complex, are retained in the ER. Neither protein contains a known ER localization signal. Gaa1 is a polytopic membrane glycoprotein with a cytoplasmic N terminus and a large luminal loop between its first two transmembrane spans; PIG-T is a type I membrane glycoprotein. To simplify our analyses, we studied Gaa1 and PIG-T constructs that could not interact with other subunits of the transamidase. We now show that Gaa1(282), a truncated protein consisting of the first TM domain and luminal loop of Gaa1, is correctly oriented, N-glycosylated, and ER-localized. Removal of a potential ER localization signal in the form of a triple arginine cluster near the N terminus of Gaa1 or Gaa1(282) had no effect on ER localization. Fusion proteins consisting of different elements of Gaa1(282) appended to alpha2,6-sialyltransferase or transferrin receptor could exit the ER, indicating that Gaa1(282), and by implication Gaa1, does not contain any dominant ER-sorting determinants. The data suggest that Gaa1 is passively retained in the ER by a signalless mechanism. In contrast, similar analyses of PIG-T revealed that it is ER-localized because of information in its transmembrane span; fusion of the PIG-T transmembrane span to Tac antigen, a plasma membrane-localized protein, caused the fusion protein to remain in the ER. These data are discussed in the context of models that have been proposed to account for retention of ER membrane proteins.  相似文献   

15.
16.
S Hallén  M Br?ndén  P A Dawson  G Sachs 《Biochemistry》1999,38(35):11379-11388
Mammalian sodium-dependent bile acid transporters (SBATs) responsible for bile salt uptake across the liver sinusoidal or ileal/renal brush border membrane have been identified and share approximately 35% amino acid sequence identity. Programs for prediction of topology and localization of transmembrane helices identify eight or nine hydrophobic regions for the SBAT sequences as membrane spanning. Analysis of N-linked glycosylation has provided evidence for an exoplasmic N-terminus and a cytoplasmic C-terminus, indicative of an odd number of transmembrane segments. To determine the membrane topography of the human ileal SBAT (HISBAT), an in vitro translation/translocation protocol was employed using three different fusion protein constructs. Individual HISBAT segments were analyzed for signal anchor or stop translocation (stop transfer) activity by insertion between a cytoplasmic anchor (HK M0) or a signal anchor segment (HK M1) and a glycosylation flag (HK beta). To examine consecutive HISBAT sequences, sequential hydrophobic sequences were inserted into the HK M0 vector or fusion vectors were made that included the glycosylated N-terminus of HISBAT, sequential hydrophobic sequences, and the glycosylation flag. Individual signal anchor (SA) and stop transfer (ST) properties were found for seven out of the nine predicted hydrophobic segments (H1, H2, H4, H5, H6, H7, and H9), supporting a seven transmembrane segment model. However, the H3 region was membrane inserted when translated in the context of the native HISBAT flanking sequences. Furthermore, results from translations of sequential constructs ending after H7 provided support for integration of H8. These data provide support for a SBAT transmembrane domain model with nine integrated segments with an exoplasmic N-terminus and a cytoplasmic C-terminus consistent with a recent predictive analysis of this transporter topology.  相似文献   

17.
The integrin alpha 6 beta 4 is a major component of hemidesmosomes, in which it is linked to intermediate filaments. Its presence in these structures is dependent on the beta 4 cytoplasmic domain but it is not known whether beta 4 interacts directly with keratin filaments or by interaction with other proteins. In this study, we have investigated the interaction of GST-cyto beta 4A fusion proteins with cellular proteins and demonstrate that a fragment of beta 4A, consisting of the two pairs of fibronectin type III repeats, separated by the connecting segment, forms a specific complex containing a 500-kDa protein that comigrates with HD1, a hemidesmosomal plaque protein. A similar protein was also bound by a glutathione S-transferase fusion protein containing the cytoplasmic domain of a variant beta 4 subunit (beta 4B), in which a stretch of 53 amino acids is inserted in the connecting segment. Subsequent immunoblot analysis revealed that the 500-kDa protein is in fact HD1. In COS-7 cells, which do not express alpha 6 beta 4 or the hemidesmosomal components BP230 and BP180, HD1 is associated with the cytoskeleton, but after transfecting the cells with cDNAs for human alpha 6 and beta 4, it was, instead, colocalized with alpha 6 beta 4 at the basal side of the cells. The organization of the vimentin, keratin, actin, and tubulin cytoskeletal networks was not affected by the expression of alpha 6 beta 4 in COS-7 cells. The localization of HD1 at the basal side of the cells depends on the same region of beta 4 that forms a complex containing HD1 in vitro, since the expression of alpha 6 with a mutant beta 4 subunit that lacks the four fibronectin type III repeats and the connecting segment did not alter the distribution of HD1. The results indicate that for association of alpha 6 beta 4 with HD1, the cytoplasmic domain of beta 4 is essential. We suggest that this association may be crucial for hemidesmosome assembly.  相似文献   

18.
Reticulon (RTN) proteins are localized to the endoplasmic reticulum (ER), and are related to intracellular membrane trafficking, apoptosis, inhibiting axonal regeneration, and Alzheimer's disease. The RTN proteins are produced without an N-terminal signal peptide. Their C-terminal domain contains two long hydrophobic segments. We analyzed the ER localization signal of human RTN1-A. Mutant proteins lacking the first (39 residues) or second (36 residues) hydrophobic segment showed ER localization. On the other hand, the mutant lacking both hydrophobic segments was cytosolic. Enhanced green fluorescent protein (EGFP) tagged with the first or second hydrophobic segment of RTN1-A was localized to the ER. These results suggest that each hydrophobic segment determines the ER localization. In addition, EGFP tagged with the truncated form of the first hydrophobic segment exhibited the localization to the Golgi rather than the ER. This suggests that the length of the hydrophobic segment contributes to the ER retention of RTN1-A.  相似文献   

19.
The coding region for the mature form of TEM beta-lactamase was fused to random positions within the coding region of the penicillin-binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in-frame fusions were determined. All fusion proteins that contained at least the NH2-terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the beta-lactamase moiety had been translocated to the periplasm. Fusion proteins that contained less than or equal to 63 residues of PBP 1B possessed beta-lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the beta-lactamase moiety of these fusion proteins remained in the cytoplasm. The beta-lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic transmembrane segment (residues 64-87), with a short NH2-terminal domain (residues 1-63), and the remainder of the polypeptide (residues 88-844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

20.
A yeast membrane protein was isolated by its binding to tRNA Sepharose column. The 45 kDa protein shares characteristics with rat liver nuclear pore proteins in having reactivity with a monoclonal antibody (RL1) raised against rat liver nuclear pore proteins and by the binding of wheat germ agglutinin (WGA), indicating the presence of N-acetylglucosamine (GlcNAc) moieties. Immunofluorescence microscopy and cell fractionation experiments indicate that the protein is located in the nuclear envelope and the endoplasmic reticulum of the cell. The gene for the 45 kDa protein was cloned using degenerate oligonucleotides derived from the N-terminal protein sequence and confirmed by internal peptide sequences. The gene was named WBP1. The protein coding sequence of the WBP1 gene reveals an ER entry signal peptide and a C-terminal membrane spanning domain. Topological studies indicate that the C-terminus of the protein is located in the cytoplasm. The cytoplasmic tail of the protein contains the K-K-X-X signal known to be sufficient for retention of transmembrane proteins in higher eukaryotic cells. Gene disruption experiments show that the 45 kDa protein is essential for the vegetative life cycle of the yeast cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号