首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical comparison was made of radioimmunotherapy (RIT) dosimetry estimates for eight radionuclides (90Y,105Rh, 131I, 153Sm, 186Re, 188Re,198Au, 211At) conjugated to IgG, F(ab′)2, and Fab antibody forms. Antibody pharmacokinetics, derived from a nude mouse animal model were combined with appropriate physical data and S values to evaluate absorbed dose to a 0.5 kg centrally located tumor, total body and kidney. Radioimmunoconjugates of F(ab′)2 with 90Y, 153Sm and 186Re were predicted to be the most promising for RIT.  相似文献   

2.
The β emitting isotopes 186Re and 188Re are logical choices on which to base therapeutic radiopharmaceuticals that might be expected to be analogous to diagnostic radiopharmaceuticals based on 99mTc. However, the chemistry of rhenium is sufficiently different from that of technetium so that the development of Re radiopharmaceuticals often cannot be predicated on the known chemistry and biological behavior of 99mTc radiopharmaceuticals. The relevant chemical differences involve the greater stability of the higher oxidation states of Re (and thus the greater tendency of reduced Re radiopharmaceuticals to undergo re-oxidation to perrhenate), and the greater substitution inertness of reduced Re complexes. These differences are illustrated (1) in the preparation and use of 186Re (Sn)-HEDP and 99mTc(Sn)-HEDP diphosphonate radiopharmaceuticals designed, respectively, for palliative therapy and diagnosis of metastatic cancer to bone, and (2) in the preparation and biodistribution of tr-[186Re(DMPE)2Cl2]+ and [186Re(DMPE)3]+, analogs to the potential myocardial perfusion imaging agents tr-[99mTc(DMPE)2Cl2]+ and [99mTc(DMPE)3]+. [HEDP = (1-hydroxyethylidene)diphosphonate; DMPE = 1,2-bis(dimethylphosphino)ethane].  相似文献   

3.
In a quest for more effective radiopharmaceuticals for pain palliation of metastatic bone cancer, this paper relates results obtained with 166Ho and 153Sm complexed to the bone seeking phosphonate, N,N-dimethylenephosphonate-1-hydroxy-4-aminopropylidenediphosphonate (APDDMP). APDDMP is synthesised from the known bone cancer pain palliation agent 1-hydroxy-3-aminopropylidenediphosphonate (APD) and was complexed to lanthanide trivalent metal ions. This work is performed to utilise the idea that the energetic beta-particle emitter, 166 Ho, coupled with phosphonate ligands such as APD and APDDMP could afford a highly effective radiopharmaceutical in the treatment of bone cancer. Complex-formation constants of APDDMP with the important blood plasma metal-ions, Ca2+, Mg2+, and Zn2+ and the trivalent lanthanides Ho3+ and Sm3+ were measured by glass electrode potentiometry at 37 degrees C and I = 150 mM. Blood plasma models were constructed using the computer code ECCLES and the results compared with those gathered from animal tests. The 166Ho-APDDMP complex was found to have little liver or bone uptake while 153Sm-APDDMP had a moderate bone uptake. This was primarily due to the high affinity of APDDMP for Ca(II). Clinical observations could be explained by the blood plasma modelling.  相似文献   

4.
A set of tetraaza macrocycles containing pyridine and methylcarboxylate (ac3py14) or methylphosphonate (MeP2py14 and P3py14) pendant arms were prepared and their stability constants with La3+, Sm3+, Gd3+ and Ho3+ determined by potentiometry at 25 °C and 0.10 M ionic strength in NMe4NO3. The metal:ligand ratio for 153Sm and 166Ho and for ac3py14, MeP2py14 and P3py14, as well as the pH of the reaction mixtures, were optimized to achieve a chelation efficiency higher than 98%. These radiocomplexes are hydrophilic and have a significant plasmatic protein binding. In vitro stability was studied in physiological solutions and in human serum. All complexes are stable in saline and PBS, but 20% of radiochemical impurities were detected after 24 h of incubation in serum. Biodistribution studies in mice indicated a slow rate of clearance from blood and muscle, a high and rapid liver uptake and a very slow rate of total radioactivity excretion. Some bone uptake was observed for complexes with MeP2py14 and P3py14, which was enhanced with time and the number of methylphosphonate groups. This biological profile supports the in vitro instability found in serum and is consistent with the thermodynamic stability constants found for these complexes.  相似文献   

5.
Accumulation of radiopharmaceuticals in the liver is frequently observed and represents in general a limiting factor when developing novel labeled compounds for any purpose in nuclear medicine. Aiming at the treatment of liver cancer with radiopharmaceuticals, such accumulation is desired but the compounds have to remain in the liver over an extended time period rather than being washed out or redistributed over time in the whole body. Lipiodol is known to remain in the liver and we present here a study for the preparation of 186Re and 99mTc labeled Lipiodol surrogates expected to behave similarly. We have synthesized two bidentate and two tridentate ligands conjugated to a pendant C18 chain as well as their corresponding fac-[Re(CO)3]+ and fac-[Tc(CO)3]+ complexes. Three of the rhenium complexes have been structurally characterized. Labelling with [186Re(OH2)3(CO)3]+ and [99mTc(OH2)3(CO)3]+, respectively, gave yields in the range of 90%. The complexes could be extracted into Lipiodol due to their high lipophilicity and close structural relationship with the major components of Lipiodol. The complexes are stable in water and in Lipiodol for more than 24 h. These Lipiodol surrogates present new low-valent technetium and rhenium complexes for applications in liver cancer imaging and therapy.  相似文献   

6.
The stability constants of La(3+), Sm(3+) and Ho(3+) complexes with 13- and 14-membered macrocycles having methylcarboxylate (trita and teta) or methylphosphonate (tritp and tetp) arms were determined. All the ligands were labelled with (153)Sm and (166)Ho in order to evaluate the effect of the macrocyclic cavity size and type of appended arms on their in vitro and in vivo behaviour. The radiolabelling efficiency was found to be higher than 98% for all the complexes, except for those of tetp. All radiocomplexes studied are hydrophilic with an overall negative charge and low plasmatic protein binding. Good in vitro stability in physiological media and human serum was found for all complexes, except the (153)Sm/(166)Ho-teta, which are unstable in phosphate buffer (pH 7.4). In vitro hydroxyapatite (HA) adsorption studies indicated that (153)Sm/(166)Ho-tritp complexes bind to HA having the (166)Ho complex the highest degree of adsorption (>80%, 10 mg). Biodistribution studies in mice demonstrated that (153)Sm/(166)Ho-trita complexes have a fast tissue clearance with more than 95% of the injected activity excreted after 2 h, value that is comparable to the corresponding dota complexes. In contrast, the (153)Sm-teta complex has a significantly lower total excretion. (153)Sm/(166)Ho-tritp complexes are retained by the bone, particularly (166)Ho-tritp that has 5-6% (% I.D./g) bone uptake and also a high rate of total excretion. Thus, these studies support the potential interest of (153)Sm/(166)Ho-trita complexes for therapy when conjugated to a biomolecule and the potential usefulness of the (166)Ho-tritp complex in bone pain palliation.  相似文献   

7.
Samarium-153 is a radionuclide which can be produced in high yield by neutron irradiation and which has nuclear properties that make it attractive for use as a radiotherapeutic agent. Several phosphonate complexes of 153Sm were synthesized and characterized by electrophoresis and HPLC. A procedure based on cation exchange chromatography was developed for measuring complex yields. The complexes could be produced in yields greater than 99%, were anionic, and most exhibited a single HPLC peak.  相似文献   

8.
A trivalent rare‐earth ion (Sm3+)‐doped LiNa3P2O7 (LNPO) phosphor was synthesized using a conventional high‐temperature solid‐state reaction route. A predominant orthorhombic phase of LNPO was observed in all X‐ray diffraction patterns. The surface states of the LNPO:Sm phosphor were confirmed by X‐ray photoelectron spectroscopy. Under 401 nm excitation, the Sm‐doped LNPO phosphors showed sharp emission peaks at 563, 600 and 647 nm that are related to the f–f transition of Sm3+ ions. The optimum concentration of Sm3+ (9 mol%) produced Commission Internationale de l'Eclairage chromaticity coordinates, color rendering index and correlated color temperature of (0.564, 0.434), 42 and 1843 K, respectively.  相似文献   

9.
The novel methylphosphonic acid monoethylester (H4dotpOEt) has been synthesized and characterized and their complexes with Sm(III) and Ho(III) ions were studied. Dissociation constants of the ligand are lower than those of H4dota. The stability constants of the Ln(III)-H4dotpOEt complexes are surprisingly much lower that those of H4dota (H4dota = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) probably due to a lower coordination ability of the phosphonate monoester groups. Acid-assisted decomplexation studies have shown that both complexes are less kinetically inert than the H4dota complexes, but still much more inert than complexes of open-chain ligands. Nevertheless, the synthesis of 153Sm and 166Ho complexes with this ligand led to stable complexes both in vitro and in vivo. A very low binding of these complexes to hydroxyapatite (HA) and calcified tissues was observed confirming the assumption that a fully ionized phosphonate group(s) is necessary for a strong bone affinity. Both complexes show similar behaviour in vivo and, in general, follow the biodistribution trend of the H4dota complexes with the same metals.  相似文献   

10.
We have recently described a method for radiolabeling monoclonal antibodies, with metallic radionuclides using a new chelating agent N2S3. Using this chelate the monoclonal antibodies Lym-1 and B72.3 were labeled with 186Re and their biological integrity was evaluated in vitro and in vivo. 186Re-labeled antibodies using N2S4 methodology were found to be stable in human serum and retained their immunoreactivity. Intravenous administration of 0.5 mCi 186Re-labeled antibodies resulted in partial or complete regression of tumor tissue in mice.  相似文献   

11.
Sm3+ ions doped strontium lithium lead borate glasses (SLLB:Sm) were prepared using a conventional melt‐quenching technique. The glasses were analyzed using X‐ray diffractometry and Fourier transform infrared spectroscopy, optical absorption, fluorescence spectral analysis, and fluorescence lifetime decay. The Judd–Ofelt (J–O) parameters and radiative parameters of the SLLB:Sm10 glass (1.0 mol% Sm3+ ion‐doped glass) were calculated using J–O theory. From the emission spectra, among all the synthesized glass, SLLB:Sm10 glass had the highest emission intensity for 4G5/26H11/2 transition (610 nm). Emission parameters, such as stimulated emission cross‐section and optical gain bandwidth, were calculated. For all concentrations of Sm3+ ions, the decay profile showed an exponential nature and decreased when the Sm3+ ion concentration was increased due to a concentration quenching effect. This result suggests that the synthesized SLLB:Sm10 glass could be used for application in high‐density optical memory devices.  相似文献   

12.
A novel tunable red emitting phosphor LiBaB9O15:Sm2+/Sm3+, Li+ with broad excitation band was synthesized by a high temperature solid‐state method. Luminescence properties were investigated in detail by luminescence, X‐ray photoelectron spectroscopy (XPS) spectra and CIE chromaticity coordinates. XPS data confirmed that there were Sm3+ in LiBaB9O15:Sm3+ and Sm2+/Sm3+ in LiBaB9O15:Sm2+/Sm3+, respectively. Spectral property of LiBaB9O15:Sm3+, LiBaB9O15:Sm3+/Sm2+ and LiBaB9O15:Sm2+, Li+ presented that the excitation band of Sm3+ widened and the excitation band of Sm2+ ranged from 350 to 450 nm. And the red light color is tunable with changing Li+ concentration. The results indicated that LiBaB9O15:Sm2+/Sm3+, Li+ may be promising red phosphor for white light emitting diodes.  相似文献   

13.
3 substances, B1, B2, and E1 were isolated from culture medium extracts ofAureobasidium pullulans by reversed phase liquid chromatography and subsequent liquid chromatographic purification steps on silica gel. The 3 compounds inhibited the metabolism ofSaccharomyces cerevisiae and showed toxic effects in the growth inhibition test toEscherichia coli andBacillus subtilis. Elementary analysis and mass spectroscopical methods revealed sum formulas of C23H22O6, C22H20O6 and C24H28O3 for B1 B2, and E1 and molecular weights of 394, 380, and 364, respectively. Mass spectroscopical, UV-, IR-,13C-NMR, and1H-NMR-spectroscopical investigations revealed polycyclic, non-aromatic compounds containing several carbonyl functions and double bonds and, most notably, spiroepoxy-functions, in the case of B1 and B2.  相似文献   

14.
Thin films of lanthanide orthoniobate LnNbO4 (LnNO) and orthotantalate LnTaO4 (LnTO), (Ln = Nd, Sm, Eu) were fabricated using the sol–gel method with subsequent spin-coating on the PbZrO3/Al2O3 substrate and annealing at 1000°C. X-ray diffraction patterns showed monoclinic M-LnNbO4 or M´-LnTaO4, which coexists with the orthorhombic or tetragonal phase. X-ray photoelectron spectroscopy demonstrated the presence of Nd3+, Sm3+/Sm2+ and Eu3+/Eu2+ ions. The luminescence properties of polymorphic films were investigated. Excitation spectra of PbZrO3 interlayer represented broad bands at 410 and 550 nm that were assigned to charge transfer bands (CTB). In all films, the CTB broad band at ~275 nm related to charge transfer transition of Ln3+→O2− and NbO43− or TaO43− groups. In excitation spectra, 4I9/24G5/2 (Nd3+), 6H5/26P3/2 (Sm3+) and 7F05L6 (Eu3+) transitions (at 585, 402 and 395 nm), respectively were found to be more intense than any other Ln3+ transition. The emission spectra showed narrow and intense bands at 1065, 600, and 614 nm that were ascribed to Nd3+, Sm3+, and Eu3+ 4f–f intraconfigurational transitions 4F3/24I11/2, 4G5/26H7/2, and 5D07F2, respectively. The excellent luminescence properties of films make them new potential groups for visible and/or near-infrared applications such as sensors and imaging equipment.  相似文献   

15.
Summary The rare earth radionuclides177Lu and153Sm were administered as single i.p. injections in NMRI mice. Lu was deposited principally (up to 60%) in the skeleton if the quantity of stable carrier was low. Increase of stable carrier enhanced deposition in the reticulo-endothelial system. Sm was preferentially deposited in the liver; the liver deposits were further increased by the addition of stable Sm. Liver doses of between 75 and 150 Gy, resulting from a single injection of153Sm together with 2 mg/kg stable carrier, led to severe lesions in the liver five months after treatment.Administration of177Lu resulting in skeletal doses of between 28 and 224 Gy was found to be osteosarcomogenic. Up to 40% osteosarcoma incidence was obtained in animals with 56 and 112 Gy doses in the skeleton. Skeletal doses of this order of magnitude are also known to be osteosarcomogenic when given as90Sr injections. The analogous situation with-emitters is discussed.Dedicated to Prof. Dr. Wolfgang Gössner on the occasion of his 60th birthdayIn Association with EURATOM (Contr. Nr. 218-76-1)  相似文献   

16.
Y2Zr2O7‐doped with Eu3+ and Sm3+ phosphors were prepared for the first time as multifunctional smart materials using a solid‐state reaction method at 1400oC. Thermal behaviour, crystal structure, surface morphology, and elemental analysis were characterized using thermogravimetric (TG) and differential thermal (DTA) analyses, X‐ray diffraction (XRD) and scanning electron microscope equipped with energy‐dispersive X‐ray spectroscopy (SEM‐EDX). Experimental results revealed that both phosphors have a pyrochlore structure with a cubic crystal system. Photoluminescence properties were also measured and red emission was observed from Y1.90Eu0.10Zr2O7 and Y1.90Sm0.10Zr2O7 phosphors. Dielectric constant, loss tangent, piezoelectric charge constant, and Curie temperature of all the samples were determined using an LCR‐meter, d33‐meter, and TG/DTA. Eu doping in Y2Zr2O7 resulted in a high dielectric constant (9.61) and low loss tangent (1.67%) values, whereas high piezoelectric charge constant (0.68 pC/N) and high Curie temperature (820°C) could be obtained using Sm‐doped Y2Zr2O7.  相似文献   

17.
Two series of red‐emitting phosphors Sr‐Ba‐Mo‐W‐O:Eu,Sm and Sr‐Ba‐Mo‐W‐O:Eu have been synthesized by a sol–gel method. The effects of the chemical composition, concentrations of Sm3+ and Eu3+, the Sr2+/Ba2+ ratio, and the W6+/Mo6+ ratio on the luminescent properties were investigated. The as‐prepared phosphors were characterized by X‐ray diffraction and Raman spectra. Results showed that single phases of the two series were prepared. The compositions of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 had the strongest luminescent intensity. The excitation spectra of Sm3+, Eu3+ co‐doped phosphors were broader and the strongest peak moved to 404 nm when compared with that of Eu3+ single‐doped phosphors. The luminescent intensity of the Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 at 618 nm were 2.8 times greater than that of Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10. The luminescent intensity of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 at 150 °C decreased to 56.8% and 50.3% of the initial value at room temperature, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A new yellowish‐orange emitting phosphor, Ba2B10O17:Sm3+ for use as a white light‐emitting diode (W‐LED) was synthesized by a solid‐state reaction method. The X‐ray diffraction results indicated that a pure Ba2B10O17 material was obtained. As a potential yellowish‐orange luminescent material for W‐LEDs, the Ba2B10O17:Sm3+ phosphor could be excited effectively by near‐ultraviolet (n‐UV) light and exhibited yellowish‐orange emission centered at 560 nm corresponding to the 4G5/2 → 6H5/2 transition of Sm3+ ions. The optimum concentration of Sm3+ ions in Ba2B10O17, critical transfer distance (Ra) and concentration quenching mechanism of the presented phosphor were investigated. Moreover, CIE chromaticity coordinates and color purity performance of the Ba2B10O17:Sm3+ phosphor were also discussed. The present work suggests that the Ba2B10O17:Sm3+ phosphor has potential as a type of yellowish‐orange emitting phosphor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
It is well known that rare earth elements (REEs) have come into extensive use in a number of fields. As a result, REEs are becoming closely related to human's daily life. However, until now, the distributions of REEs in the brain are not yet very clear. In this study, Sprague-Dawley male rats were intraperitoneally injected with 0.25 mL of 153SmCl3 solution (containing 10 μg Sm). The brain were perfused with saline to minimize the blood influence. The radioactivities of 153Sm in the five brain regions (hypothalamus, cerebellum, hippocampus, corpus striatum, and cerebral cortex) were counted. The results suggested that Sm did enter into the brain. Although only about 0.0003% of the given dose was accumulated in the brain, Sm seemed to be remain in the brain for a long time. The highest amounts and lowest concentrations of 153Sm were found in the cerebral cortex, and the highest concentrations of 153Sm were found in the hypothalamus.  相似文献   

20.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号