首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of β-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional β-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the β-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the β-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the β-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of β-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

2.
3.
Lac+ recombinant plasmids encoding a β-galactosidase fused protein and lactose permease of Escherichia coli were introduced Zymomonas mobilis. The fused protein was expressed with 450 to 5,860 Miller units of β-galactosidase activity, and functioned as lactase. Raffinose uptake by Z. mobilis CP4 was enhanced in the plasmid-carrying strain over the plasmid-free strain, suggesting that the lactose permease was functioning in the organism. Z. mobilis carrying the plasmid could produce ethanol from lactose and whey, but could not grow on lactose as the sole carbon source. It was found that the growth of the organism was inhibited by either galactose of the galactose liberated from lactose.  相似文献   

4.
5.
6.
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.  相似文献   

7.
Gene fusion vectors based on the gene for staphylococcal protein A   总被引:1,自引:0,他引:1  
Two plasmid vectors, containing the gene coding for staphylococcal protein A and adapted for gene fusion, have been constructed. These vectors will allow fusion of any gene to the protein A gene, thus giving hybrid proteins which can be purified, in a one-step procedure, by IgG affinity chromatography. As an example of the practical use of such vectors, the protein A gene has been fused to the lacZ gene of Escherichia coli. E. coli strains containing such plasmids produce hybrid proteins with both IgG binding and β-galactosidase activities. The hybrid protein(s) can be immobilized on IgG-Sepharose by its protein A moiety with high efficiency without losing its enzymatic activity and they can be eluted from the column by competitive elution with pure protein A. The fused protein(s) also binds to IgG-coated microtiter wells which means that the in vivo product can be used as an enzyme conjugate in ELISA tests.  相似文献   

8.
Cloning and expression of the aromatic ring dehalogenation genes in biphenyl-growing, polychlorinated biphenyl (PCB)-cometabolizing Comamonas testosteroni VP44 resulted in recombinant pathways allowing growth on ortho- and para-chlorobiphenyls (CBs) as a sole carbon source. The recombinant variants were constructed by transformation of strain VP44 with plasmids carrying specific genes for dehalogenation of chlorobenzoates (CBAs). Plasmid pE43 carries the Pseudomonas aeruginosa 142 ohb genes coding for the terminal oxygenase (ISPOHB) of the ortho-halobenzoate 1,2-dioxygenase, whereas plasmid pPC3 contains the Arthrobacter globiformis KZT1 fcb genes, which catalyze the hydrolytic para-dechlorination of 4-CBA. The parental strain, VP44, grew only on low concentrations of 2- and 4-CB by using the products from the fission of the nonchlorinated ring of the CBs (pentadiene) and accumulated stoichiometric amounts of the corresponding CBAs. The recombinant strains VP44(pPC3) and VP44(pE43) grew on, and completely dechlorinated high concentrations (up to 10 mM), of 4-CBA and 4-CB and 2-CBA and 2-CB, respectively. Cell protein yield corresponded to complete oxidation of both biphenyl rings, thus confirming mineralization of the CBs. Hence, the use of CBA dehalogenase genes appears to be an effective strategy for construction of organisms that will grow on at least some congeners important for remediation of PCBs.  相似文献   

9.
A Thermus thermophilus selector strain for production of thermostable and thermoactive α-galactosidase was constructed. For this purpose, the native α-galactosidase gene (agaT) of T. thermophilus TH125 was inactivated to prevent background activity. In our first attempt, insertional mutagenesis of agaT by using a cassette carrying a kanamycin resistance gene led to bacterial inability to utilize melibiose (α-galactoside) and galactose as sole carbohydrate sources due to a polar effect of the insertional inactivation. A Gal+ phenotype was assumed to be essential for growth on melibiose. In a Gal background, accumulation of galactose or its metabolite derivatives produced from melibiose hydrolysis could interfere with the growth of the host strain harboring recombinant α-galactosidase. Moreover, the AgaT strain had to be Kms for establishment of the plasmids containing α-galactosidase genes and the kanamycin resistance marker. Therefore, a suitable selector strain (AgaT Gal+ Kms) was generated by applying integration mutagenesis in combination with phenotypic selection. To produce heterologous α-galactosidase in T. thermophilus, the isogenes agaA and agaB of Bacillus stearothermophilus KVE36 were cloned into an Escherichia coli-Thermus shuttle vector. The region containing the E. coli plasmid sequence (pUC-derived vector) was deleted before transformation of T. thermophilus with the recombinant plasmids. As a result, transformation efficiency and plasmid stability were improved. However, growth on minimal agar medium containing melibiose was achieved only following random selection of the clones carrying a plasmid-based mutation that had promoted a higher copy number and greater stability of the plasmid.  相似文献   

10.
11.
Two forms of initiation factor 2, (IF-2α, Mr, 118,000 and IF-2β, Mr 90,000) have been isolated from Escherichia coli extracts and tested for their ability to support β-galactosidase synthesis in a phage DNA-directed in vitro protein synthesis system. Although both forms are equally active in supporting the binding of fMet-tRNA to ribosomes only IF-2α functions in β-galactosidase synthesis.  相似文献   

12.
13.
1. Catabolite repression of β-galactosidase and of thiogalactoside transacetylase was studied in several strains of Escherichia coli K 12, in an attempt to show whether a single site within the structural genes of the lac operon co-ordinately controls translational repression for the two enzymes. In all experiments the rate of synthesis of the enzymes was compared in glycerol–minimal medium and in glucose–minimal medium. 2. In a wild-type strain, glucose repressed the synthesis of the two enzymes equally. 3. The possibility that repression was co-ordinate was investigated by studies of mutant strains that carry deletions in the genes for β-galactosidase or galactoside permease or both. In all of the strains with deletions, the repression of thiogalactoside transacetylase persisted, and it is concluded that there is no part of the structural gene for β-galactosidase that is essential for catabolite repression of thiogalactoside transacetylase. 4. Subculture of one strain through several transfers in rich medium greatly increased its susceptibility to catabolite repression by glucose. It is concluded that unknown features of the genotype can markedly affect sensitivity to catabolite repression. 5. These results make it clear that one cannot draw valid conclusions about the effect of known genotypic differences on catabolite repression from a comparison of two separate strains; to study the effect of a particular genetic change in a lac operon it is necessary to construct a partially diploid strain so that catabolite repression suffered by one lac operon can be compared with that suffered by another. 6. Four such partial diploids were constructed. In all of them catabolite repression of β-galactosidase synthesized by one operon was equal in extent to catabolite repression of thiogalactoside transacetylase synthesized by the other. 7. Taken together, these results suggest that catabolite repression of β-galactosidase and thiogalactoside transacetylase is separate but equal.  相似文献   

14.
A single-copy reporter system for Staphylococcus xylosus has been developed, that uses a promoterless version of the endogenous β-galactosidase gene lacH as a reporter gene and that allows integration of promoters cloned in front of lacH into the lactose utilization gene cluster by homologous recombination. The system was applied to analyze carbon catabolite repression of S. xylosus promoters by the catabolite control protein CcpA. To test if lacH is a suitable reporter gene, β-galactosidase activities directed by two promoters known to be subject to CcpA regulation were measured. In these experiments, repression of the malRA maltose utilization operon promoter and autoregulation of the ccpA promoters were confirmed, proving the applicability of the system. Subsequently, putative CcpA operators, termed catabolite-responsive elements (cres), from promoter regions of several S. xylosus genes were tested for their ability to confer CcpA regulation upon a constitutive promoter, PvegII. For that purpose, cre sequences were placed at position +3 or +4 within the transcribed region of PvegII. Measurements of β-galactosidase activities in the presence or absence of glucose yielded repression ratios between two- and eightfold. Inactivation of ccpA completely abolished glucose-dependent regulation. Therefore, the tested cres functioned as operator sites for CcpA. With promoters exclusively regulated by CcpA, signal transduction leading to CcpA activation in S. xylosus was examined. Glucose-dependent regulation was measured in a set of isogenic mutants showing defects in genes encoding glucose kinase GlkA, glucose uptake protein GlcU, and HPr kinase HPrK. GlkA and GlcU deficiency diminished glucose-dependent CcpA-mediated repression, but loss of HPr kinase activity abolished regulation. These results clearly show that HPr kinase provides the essential signal to activate CcpA in S. xylosus. Glucose uptake protein GlcU and glucose kinase GlkA participate in activation, but they are not able to trigger CcpA-mediated regulation independently from HPr kinase.  相似文献   

15.
16.
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.  相似文献   

17.
1. The intermediary metabolism of two strains of Escherichia coli has been examined. One strain (Q22) exhibits acute transient repression of β-galactosidase synthesis when glucose is supplied to cells growing on glycerol; the other strain (W3110) does not. The two strains do not differ genetically in their lac operons. 2. Strain Q22 uses about twice as much glucose as strain W3110 per unit of cell mass produced. 3. Pentose phosphate-cycle activity in the presence of glucose is much stronger in strain Q22 than in strain W3110. 4. In strain Q22 the pool sizes of glucose 6-phosphate, 6-phosphogluconate, fructose 1,6-diphosphate and NADPH increase when glucose is added to cells growing on glycerol, and β-galactosidase synthesis is severely inhibited. After about 1hr. the synthesis of β-galactosidase is partly resumed, and the pool sizes of the four compounds fall. ATP, NADH and several other phosphorylated compounds show no concentration changes. 5. These concentration changes do not occur in strain W3110, in which β-galactosidase synthesis is only rather weakly repressed by glucose. 6. It is suggested that repression of enzyme synthesis by glucose requires the rapid operation of the pentose phosphate cycle, and is mediated by one of the four substances whose concentration rises and later falls in strain Q22. A definite choice of effector from among these four possibilities cannot at present be made.  相似文献   

18.
Time-dependent aggregation of a plasmid-encoded β-galactosidase fusion protein, VP1LAC, has been carefully monitored during its high-rate synthesis in Escherichia coli. Immediately after recombinant gene induction, the full-length form of the protein steadily accumulates into rapidly growing cytoplasmic inclusion bodies. Their volume increases during at least 5 h at a rate of 0.4 μm3 h−1, while the average density remains constant. Protein VP1LAC accounts for about 90% of the aggregated protein throughout the building process. Minor components, such as DnaK and GroEL chaperones, have been identified in variable, but low concentrations. The homogeneous distribution of inclusion bodies among the cell population and the coexistence of large, still growing bodies with newly appearing aggregates indicate that the aggregation cores are mutually exclusive, this fact being a main determinant of the in vivo dynamics of protein aggregation.  相似文献   

19.
20.
Chicken anemia virus (CAV) is an anemia agent of breeder and young chicks. This virus is the cause of economic losses across the chicken industry worldwide as a consequence of severe anemia and immunodeficiency among the birds. Two genes of CAV encoding the VP1 and VP2 proteins were cloned and expressed in Escherichia coli BL21 (DE3). A Western blot assay using His-tag antiserum was used to assess the expression level of the CAV viral proteins in E. coli. The results demonstrated that only full-length VP2 can be successfully expressed in E. coli, but not full-length VP1. A serial of N-terminus deletions of the VP1 protein, VP1Nd30, VP1Nd60 and VP1 Nd129, were created using PCR in order to improve VP1 expression. The results demonstrated that all three of these recombinant VP1 mutant proteins can be expressed in E. coli. VP1Nd129 protein demonstrates the highest expression level compared to the other two proteins. The specificity of Nd129-VP1 and VP2 protein were confirmed by mass spectrometry. By comparing the expression level of VP1Nd129 and VP2 protein after the addition of IPTG, the results indicated that the VP1Nd129 protein gave a higher level of protein expression than VP2. The highest yields of VP1Nd129 and VP2 were 26.2 and 15.5 mg/L, respectively, after IPTG induction with 0.1 mM IPTG for 6 h, respectively. The identification of the optimized conditions for production of the CAV viral proteins VP1 and VP2 will allow them to be used in the future as an antigen for the development of vaccines and diagnostic tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号