首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of naphthalene by Cunninghamella elegans.   总被引:11,自引:7,他引:4       下载免费PDF全文
Cunninghamella elegans grown on Sabouraud dextrose broth in the presence of naphthalene produced six metabolites. Each product was isolated and identified by conventional chemical techniques. The major metabolites were 1-naphthol (67.9%) and 4-hydroxy-1-tetralone (16.7%). Minor products isolated were 1,4-naphthoquinone (2.8%), 1,2-naphthoquinone (0.2%), 2-naphthol (6.3%), and trans-1,2-dihydroxy-1,2-dihydronaphthalene (5.3%). C. elegans oxidized both 1-naphthol and 1,4-naphthoquinone to 4-hydroxy-1-tetralone. The results suggest that C. elegans oxidizes naphthalene by a sequence of reactions similar to those reported for the mammalian metabolism of this hydrocarbon.  相似文献   

2.
Cunninghamella elegans metabolized 1- and 2-methylnaphthalene primarily at the methyl group to form 1- and 2-hydroxymethylnaphthalene, respectively. Other compounds isolated and identified were 1- and 2-naphthoic acids, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, and phenolic derivatives of 1- and 2-methylnaphthalene. The metabolites were isolated by thin-layer and reverse-phase high-pressure liquid chromatography and characterized by the application of UV-visible absorption, 1H nuclear magnetic resonance, and mass spectral techniques. Experiments with [8-14C]2-methylnaphthalene indicated that over a 72-h period, 9.8% of 2-methylnaphthalene was oxidized to metabolic products. The ratio of organic-soluble in water-soluble metabolites at 2 h was 92:8, and at 72 h it was 41:59. Enzymatic treatment of the 48-h aqueous phase with either beta-glucuronidase or arylsulfatase released 60% of the metabolites of 2-methylnaphthalene that were extractable with ethyl acetate. In both cases, the major conjugates released were 5-hydroxy-2-naphthoic acid and 6-hydroxy-2-naphthoic acid. The ratio of the water-soluble glucuronide conjugates to sulfate conjugates was 1:1. Incubation of C. elegans with 2-methylnaphthalene under an 18O2 atmosphere and subsequent mass spectral analysis of 2-hydroxymethylnaphthalene indicated that hydroxylation of the methyl group is catalyzed by a monooxygenase.  相似文献   

3.
Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up.  相似文献   

4.
Six yeasts were examined for their ability to metabolize naphthalene, biphenyl and benzo(a)pyrene. All of the organisms tested oxidized these aromatic hydrocarbons. Candida lipolytica oxidized naphthalene to 1-naphthol, 2-naphthol, 4-hydroxy-1-tetralone and trans-1,2-dihydroxy-1,2-dihydronaphthalene. The major metabolite was 1-naphthol. C. lipolytica oxidized biphenyl to produce 2-, 3-, and 4-hydroxybiphenyl, 4,4′-dihydroxybiphenyl and 3-methoxy-4-hydroxybiphenyl. 4-Hydroxybiphenyl was the predominant metabolite formed. C. lipolytica oxidized benzo(a)pyrene to 3-hydroxybenzo(a)pyrene and 9-hydroxybenzo(a)pyrene. Metabolites were isolated and identified by absorption spectrophotometry, mass spectrometry and thin-layer, gasliquid and high-pressure liquid chromatography. Where possible the structures of these metabolites were confirmed by comparison with authenic compounds.  相似文献   

5.
Microbial metabolism of pyrene   总被引:6,自引:0,他引:6  
The isolation and identification of pyrene metabolites formed from pyrene by the fungus Cunninghamella elegans is described. C. elegans was incubated with pyrene for 24 h. Six metabolites were isolated by reversed-phase high-performance liquid (HPLC) and thin-layer chromatography (TLC) and characterized by the application of UV absorption, 1H-NMR and mass spectral techniques. C. elegans hydroxylated pyrene predominantly at the 1,6- and 1,8-positions with subsequent glucosylation to form glucoside conjugates of 1-hydroxypyrene, 1,6- and 1,8-dihydroxypyrene. In addition, 1,6- and 1,8-pyrenequinones and 1-hydroxypyrene were identified as metabolites. Experiments with [4-14C]pyrene indicated that over a 24-h period, 41% of pyrene was metabolized to ethyl acetate-soluble metabolites. The glucoside conjugates of 1-hydroxypyrene, 1,6- and 1,8-dihydroxypyrene accounted for 26%, 7% and 14% of the pyrene metabolized, respectively. Pyrenequinones accounted for 22%. The results indicate that the fungus C. elegans metabolized pyrene to non-toxic metabolites (glucoside conjugates) as well as to compounds (pyrenequinones) which have been suggested to be biologically active in higher organisms. In addition, there was no metabolism at the K-region of the molecule which is a major site of enzymatic attack in mammalian systems.  相似文献   

6.
A rapid, sensitive high-performance liquid chromatography assay with fluorescence detection for measuring biphenyl metabolism by intact cells has been developed. The assay does not require organic solvent extraction or enzymatic digestion for the measurement of hydroxybiphenyl conjugates. The lower limit of detectability for 4-hydroxybiphenyl is 5 pmol injected. Rat hepatocytes incubated with biphenyl form predominantly 4-hydroxybiphenyl sulfate with lesser amounts of 4-hydroxybiphenyl glucuronide and free hydroxybiphenyls, and small amounts of 3-hydroxybiphenyl sulfate and 3-hydroxybiphenyl glucuronide. Slices of fresh human liver incubated with biphenyl form predominantly 4-hydroxybiphenyl glucuronide with some free hydroxybiphenyl and small amounts of 4-hydroxybiphenyl sulfate. 4-Hydroxybiphenyl glucuronide formation by human liver shows a lag time that is not abolished by preincubating the liver without substrate. Human kidney slices incubated with biphenyl form 4-hydroxybiphenyl glucuronide and 4-hydroxybiphenyl sulfate at rates less than one-tenth those seen with human liver. Human kidney slices do not form detectable free hydroxybiphenyl. There is wide intersubject variability in the rates of hydroxybiphenyl metabolite formation by human liver and kidney.  相似文献   

7.
Biotransformation of fluorene by the fungus Cunninghamella elegans.   总被引:3,自引:3,他引:0       下载免费PDF全文
The metabolism of fluorene, a tricyclic aromatic hydrocarbon, by Cunninghamella elegans ATCC 36112 was investigated. Approximately 69% of the [9-14C]fluorene added to cultures was metabolized within 120 h. The major ethyl acetate-soluble metabolites were 9-fluorenone (62%), 9-fluorenol, and 2-hydroxy-9-fluorenone (together, 7.0%). Similarly to bacteria, C. elegans oxidized fluorene at the C-9 position of the five-member ring to form an alcohol and the corresponding ketone. In addition, C. elegans produced the novel metabolite 2-hydroxy-9-fluorenone.  相似文献   

8.
The metabolism of tetralin   总被引:2,自引:1,他引:1       下载免费PDF全文
1. [1-(14)C]Tetralin was synthesized and fed to rabbits. 2. Of the radioactivity, 87-90% was excreted in the urine within two days and 0.5-3.7% on the third day. The faeces contained 0.6-1.8%. No radioactivity was found in the breath and negligible amounts were retained in the tissues. About 90-99% of an administered dose was accounted for. 3. The main metabolite in the urine was the glucuronide of alpha-tetralol (52.4%). Other conjugated metabolites were beta-tetralol (25.3%), 4-hydroxy-alpha-tetralone (6.1%), cis-tetralin-1,2-diol (0.4%) and trans-tetralin-1,2-diol (0.6%). 4. beta-Tetralone, alpha-naphthol, 1,2-dihydronaphthalene and naphthalene, previously reported as metabolites, are artifacts, and tetralin, alpha-tetralone, beta-naphthol, 5-hydroxytetralin, and 6-hydroxytetralin are not metabolites. 5. The major metabolite of tetralin, alpha-tetralol and alpha-tetralone is the glucuronide of alpha-tetralol, which was isolated as methyl (1,2,3,4-tetrahydro-1-naphthyl tri-O-acetyl-beta-d-glucosid)uronate; the major metabolite of beta-tetralol and beta-tetralone is the glucuronide of beta-tetralol, which was characterized as methyl (1,2,3,4-tetrahydro-2-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 5-Hydroxytetralin is conjugated with glucuronic acid, and was characterized as methyl (5,6,7,8-tetrahydro-1-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 6-Hydroxytetralin is conjugated with glucuronic acid, and was characterized as methyl (5,6,7,8-tetrahydro-2-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 6. A metabolic sequence accounting for the observed biological transformation products is proposed.  相似文献   

9.
Eighty-six species of fungi belonging to sixty-four genera were examined for their ability to metabolize naphthalene. Analysis by thin-layer and high pressure liquid chromatography revealed that naphthalene metabolism occurred in forty-seven species belonging to thirty-four genera from the major fungal taxa. All organisms tested from the order Mucorales oxidized naphthalene with species of Cunninghamella, Syncephalastrum and Mucor showing the greatest activity. Significant metabolism was also observed with Neurospora crassa, Claviceps paspali and four species of Psilocybe. The predominant metabolite formed by most organisms was 1-naphthol. Other products identified were, 4-hydroxy-1-tetralone, trans-1,2-dihydroxy-1,2-dihydronaphthalene, 2-naphthol, 1,2-and 1,4-naphthoquinone.  相似文献   

10.
The marine cyanobacterium Oscillatoria sp. strain JCM oxidized naphthalene predominantly to 1-naphthol. Experiments with [1-2H]naphthalene and [2-2H]naphthalene indicated that 1-naphthol was formed with 68 and 74% retention of deuterium, respectively. No significant isotope effect was observed when the organism was incubated with a 1:1 mixture of naphthalene and [2H8]naphthalene. The results indicate that 1-naphthol is formed through a naphthalene 1,2-oxide intermediate, which rearranges spontaneously via an NIH shift mechanism.  相似文献   

11.
The marine cyanobacterium Oscillatoria sp. strain JCM oxidized naphthalene predominantly to 1-naphthol. Experiments with [1-2H]naphthalene and [2-2H]naphthalene indicated that 1-naphthol was formed with 68 and 74% retention of deuterium, respectively. No significant isotope effect was observed when the organism was incubated with a 1:1 mixture of naphthalene and [2H8]naphthalene. The results indicate that 1-naphthol is formed through a naphthalene 1,2-oxide intermediate, which rearranges spontaneously via an NIH shift mechanism.  相似文献   

12.
The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately trans-dihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes.  相似文献   

13.
Metabolites isolated from houseflies dosed with 1-napththol or p-nitrophenol were identified as the phosphate and glucose phosphate conjugates of these phenols by titrations, hydrolysis, ionophoresis, i.r. spectra and mixed melting point. [(3)H]Carbaryl (1-naphthyl N-methylcarbamate) was metabolized by houseflies, blowflies and grass grubs to water-soluble metabolites which had chromatographic and ionophoretic behaviour similar to those of the conjugates of 1-naphthol with glucose, sulphate, phosphate and glucose 6-phosphate.  相似文献   

14.
Bacillus cereus ATCC 14579 transformed naphthalene predominately to 1-naphthol. Experiments with [14C]naphthalene showed that over a 24 h period, B. cereus oxidized 5.2% of the added naphthalene. 1-Naphthol accounted for approximately 80% of the total metabolites. B. cereus incubated with naphthalene under the presence of 18O2 led to the isolation of 1-naphthol that contained 94% 18O. The metabolism of [1-2H]-and [2-2H]-naphthalene by B. cereus yielded 1-naphthol which retained 95% and 94% deuterium, respectively, as determined by mass spectral analysis. NMR spectroscopic analysis of the deuterated 1-naphthol formed from [1-2H]-naphthalene indicated an NIH shift mechanism in which 19% of the deuterium migrated from the C-1 to the C-2 position. The 18O2 and NIH shift experiments implicate naphthalene-1,2-oxide as an intermediate in the formation of 1-naphthol from naphthalene by B. cereus.Abbreviations HPLC High performance liquid chromatography - NMR nuclear magnetic resonance  相似文献   

15.
Metabolism of naphthalene by cell extracts of Cunninghamella elegans.   总被引:3,自引:0,他引:3  
Microsomal preparations of Cunninghamella elegans oxidized naphthalene to trans-1,2-dihydroxy-1,2-dihydronaphthalene, 1-naphthol, and 2-naphthol. Enzymatic activity was dependent on the presence of reduced nicotinamide adenine dinucleotide phosphate and oxygen. Reduced microsomal preparations, when treated with carbon monoxide, showed absorption maxima at 450 and 420 nm. The inhibitor 1,2-epoxy-3,3,3-trichloropropane suppressed the formation of trans-1,2-dihydroxy-1,2-dihydronaphthalene and enhanced 1-naphthol formation. The results suggest that the metabolism of naphthalene by fungal microsomes may be analogous to the cytochrome P-450-dependent monooxygenase activity that is associated with mammalian liver microsomes.  相似文献   

16.
Fungal transformation of fluoranthene.   总被引:8,自引:8,他引:0       下载免费PDF全文
The fungus Cunninghamella elegans ATCC 36112 metabolized approximately 80% of the 3-14C-labeled fluoranthene (FA) added within 72 h of incubation. C. elegans metabolized FA to trans-2,3-dihydroxy-2,3-dihydrofluoranthene (trans-2,3-dihydrodiol), 8- and 9-hydroxyfluoranthene trans-2,3-dihydrodiol, 3-fluoranthene-beta-glucopyranoside, and 3-(8-hydroxyfluoranthene)-beta-glucopyranoside. These metabolites were separated by thin-layer and reversed-phase high-performance liquid chromatography and identified by 1H nuclear magnetic resonance, UV, and mass spectral techniques. The major pathway involved hydroxylation to form a glucoside conjugate of 3-hydroxyfluoranthene and a glucoside conjugate of 3,8-dihydroxyfluoranthene which together accounted for 52% of the total ethyl acetate-soluble metabolites. C. elegans initially metabolized FA in the 2,3 position to form fluoranthene trans-2,3-dihydrodiol, which has previously been shown to be a biologically active compound in mammalian and bacterial genotoxicity tests. However, C. elegans formed predominantly glucoside conjugates of the phenolic derivatives of FA, which suggests that this fungus has the potential to detoxify FA.  相似文献   

17.
The fungus Cunninghamella elegans ATCC 36112 metabolized approximately 80% of the 3-14C-labeled fluoranthene (FA) added within 72 h of incubation. C. elegans metabolized FA to trans-2,3-dihydroxy-2,3-dihydrofluoranthene (trans-2,3-dihydrodiol), 8- and 9-hydroxyfluoranthene trans-2,3-dihydrodiol, 3-fluoranthene-beta-glucopyranoside, and 3-(8-hydroxyfluoranthene)-beta-glucopyranoside. These metabolites were separated by thin-layer and reversed-phase high-performance liquid chromatography and identified by 1H nuclear magnetic resonance, UV, and mass spectral techniques. The major pathway involved hydroxylation to form a glucoside conjugate of 3-hydroxyfluoranthene and a glucoside conjugate of 3,8-dihydroxyfluoranthene which together accounted for 52% of the total ethyl acetate-soluble metabolites. C. elegans initially metabolized FA in the 2,3 position to form fluoranthene trans-2,3-dihydrodiol, which has previously been shown to be a biologically active compound in mammalian and bacterial genotoxicity tests. However, C. elegans formed predominantly glucoside conjugates of the phenolic derivatives of FA, which suggests that this fungus has the potential to detoxify FA.  相似文献   

18.
The regulation of naphthalene and 1-naphthol metabolism in a Rhodococcus sp. (NCIMB 12038) has been investigated. The microorganism utilizes separate pathways for the degradation of these compounds, and they are regulated independently. Naphthalene metabolism was inducible, but not by salicylate, and 1-naphthol metabolism, although constitutive, was also repressed during growth on salicylate. The biochemistry of naphthalene degradation in this strain was otherwise identical to that found in Pseudomonas putida, with salicylate as a central metabolite and naphthalene initially being oxidized via a naphthalene dioxygenase enzyme to cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene (naphthalene cis-diol). A dioxygenase enzyme was not expressed under growth conditions which facilitate 1-naphthol degradation. However, biotransformations with indene as a substrate suggested that a monooxygenase enzyme may be involved in the degradation of this compound. Indole was transformed to indigo by both naphthalene-grown NCIMB 12038 and by cells grown in the absence of an inducer. Therefore, the presence of a naphthalene dioxygenase enzyme activity was not necessary for this reaction. Thus, the biotransformation of indole to indigo may be facilitated by another type of enzyme (possibly a monooxygenase) in this organism.  相似文献   

19.
The metabolism of 1-fluoronaphthalene by Cunninghamella elegans ATCC 36112 was studied. The metabolites were isolated by reverse-phase high-pressure liquid chromatography and characterized by the application of UV absorption, 1H nuclear magnetic resonance, and mass spectral techniques. C. elegans oxidized 1-fluoronaphthalene predominantly at the 3,4- and 5,6-positions to form trans-3,4-dihydroxy-3,4-dihydro-1-fluoronaphthalene and trans-5,6-dihydroxy-5,6-dihydro-1-fluoronaphthalene. In addition, 1-fluoro-8-hydroxy-5-tetralone, 5-hydroxy-1-fluoronaphthalene, and 4-hydroxy-1-fluoronaphthalene as well as glucoside, sulfate, and glucuronic acid conjugates of these phenols were formed. Circular dichroism spectra of the trans-3,4- and trans-5,6-dihydrodiols formed from 1-fluoronaphthalene indicated that the major enantiomers of the dihydrodiols have S,S absolute stereochemistries. In contrast, the trans-5,6-dihydrodiol formed from 1-fluoronaphthalene from 3-methylcholanthrene-treated rats had Cotton effects that are opposite in sign (R,R) to those formed by C. elegans. The results indicate that the fungal monooxygenase-epoxide hydrolase systems are highly stereoselective in the metabolism of 1-fluoronaphthalene and that a fluoro substituent blocks epoxidation at the fluoro-substituted double bond, decreases oxidation at the aromatic double bond that is peri to the fluoro substituent, and enhances metabolism at the 3,4- and 5,6-positions of 1-fluoronaphthalene.  相似文献   

20.
The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized within 72 h of incubation approximately 64% of the [1,8-14C]acenaphthene added. The radioactive metabolites were extracted with ethyl acetate and separated by thin-layer chromatography and reversed-phase high-performance liquid chromatography. Seven metabolites were identified by 1H nuclear magnetic resonance, UV, and mass spectral techniques as 6-hydroxyacenaphthenone (24.8%), 1,2-acenaphthenedione (19.9%), trans-1,2-dihydroxyacenaphthene (10.3%), 1,5-dihydroxyacenaphthene (2.7%), 1-acenaphthenol (2.4%), 1-acenaphthenone (2.1%), and cis-1,2-dihydroxyacenaphthene (1.8%). Parallel experiments with rat liver microsomes indicated that the major metabolite formed from acenaphthene by rat liver microsomes was 1-acenaphthenone. The fungal metabolism of acenaphthene was similar to bacterial and mammalian metabolism, since the primary site of enzymatic attack was on the two carbons of the five-member ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号