首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The solution structure of the lantibiotic gallidermin   总被引:3,自引:0,他引:3  
The 21-peptide amide antibiotic gallidermin is a potential therapeutic against acne disease. It belongs to the class of polycyclic lanthionine and alpha,beta-didehydroamino acids containing polypeptides, which were named "lantibiotics." The structural gene of the recently elucidated lantibiotic gallidermin encodes a precursor peptide containing Ser, Thr, and Cys residues in the C-terminal prolantibiotic part, and an unusually hydrophilic leader peptide. The ribosomally synthesized pregallidermin is posttranslationally modified and processed to a complex peptide antibiotic with four sulfide rings and two unsaturated residues. The complete solution structure of gallidermin was determined in trifluoroethanol: water (95:5) and dimethylsulfoxide by two-dimensional 1H-nmr at 500 MHz, using a combination of double quantum filtered correlated spectroscopy, homonuclear Hartman-Hahn, and nuclear Overhauser enhancement spectroscopy experiments. Using a total number of 152 distance constraints from NOEs and 14 torsional constraints, derived from coupling constants, we obtained a screwlike solution structure of gallidermin. Restrained molecular dynamics simulations yielded a set of five converging structures with an atomic rms difference of 1.7 A for the backbone atoms, not dependent on the starting structure. The spatial structure model is in excellent agreement with the amphiphilic and channel-forming properties of gallidermin on membranes and its tryptic cleavage at the exposed site between residues 13 and 14.  相似文献   

2.
In this work, a defined medium was developed and optimized for the mutant strain Staphylococcus gallinarum ΔP, which produces pregallidermin (PGDM), a nontoxic precursor of the lantibiotic gallidermin (GDM). The availability of a defined medium is a prerequisite for a rational process development and the investigation of medium effects on final product concentration, yield, and volumetric productivity. We identified four vitamins and three metal ions as essential for growth and PGDM production with S. gallinarum ΔP. The strain was capable of growing without any added amino acids, but the addition of proline had a strong growth-stimulatory effect. The concentrations of all essential compounds were balanced in a continuous culture using a medium-shift technique. Based on this balanced medium, a fed-batch process was developed in which S. gallinarum ΔP was grown up to a biomass concentration of 67 g l−1 and produced 1.95 g l−1 PGDM, equivalent to 0.57 mM. In the fermentation broth, we identified other GDM precursors in addition to those with a 12 or 14-amino-acid-long leader peptide that had been observed previously. Including those precursors with shorter leader sequences, the final concentration would correspond to 0.69 mM. In molar terms, this represents a roughly fourfold or fivefold increase, respectively, over established, complex medium-based gallidermin production processes (Kempf et al. 2000). With the same medium and feed protocol, the maximum concentration of mature GDM produced by wild-type S. gallinarum Tü 3928 was only 0.08 mM.  相似文献   

3.
Decreased O supply during the fermentative production of gallidermin by Staphylococcus gallinarum decreased biomass formation by 65% compared to that obtained with optimal oxygen supply. However the antibiotic, gallidermin, increased by more than 50% at the same time. This effect was used in a process strategy, that allows biomass formation under oxygen saturation first and then switches to a prolonged production phase after a carefully directed shift to oxygen limitation.  相似文献   

4.
Lantibiotics such as gallidermin are lanthionine-containing polypeptide antibiotics produced by gram-positive bacteria that might become relevant for the treatment of various infectious diseases. So far, self-toxicity has prevented the isolation of efficient overproducing strains, thus hampering their thorough investigation and preventing their exploitation in fields other than the food area. We wanted to investigate the effect of lantibiotic precursor peptides on the producing strains in order to evaluate novel strategies for the overproduction of these promising peptides. In this study, gallidermin was chosen as a representative example of the type A lantibiotics. A Staphylococcus gallinarum Tü3928 mutant, whose gene for the extracellular pregallidermin protease GdmP was replaced by a kanamycin-resistance gene, was constructed. Mass spectrometry (MS) analysis indicated that this mutant produced fully posttranslationally modified gallidermin precursors with truncated versions of the leader peptide, but not the entire leader as predicted from the gdmA sequence. In filter-on-plate assays, these truncated pregallidermins showed no toxicity against Staphylococcus gallinarum Tü3928 up to a concentration of 8 g/liter (corresponding to approximately 2.35 mM), while gallidermin produced clear inhibitory zones at concentrations as low as 0.25 g/liter (0.12 mM). We showed that the lack of toxicity is due entirely to the presence of the truncated leader, since MS as well as bioassay analysis showed that the peptides resulting from tryptic cleavage of pregallidermins and gallidermin produced by S. gallinarum Tü3928 had identical masses and approximately the same specific activity. This demonstrates that even a shortened leader sequence is sufficient to prevent the toxicity of mature gallidermin. In nonoptimized fermentations, the gdmP mutant produced pregallidermin to a 50%-higher molar titer, suggesting that the absence of self-toxicity has a beneficial effect on gallidermin production and giving a first confirmation of the suitability of the overproduction strategy.  相似文献   

5.
Lantibiotics are antibiotic peptides that contain the rare thioether amino acids lanthionine and/or methyllanthionine. Epidermin, Pep5 and epilancin K7 are produced by Staphylococcus epidermidis whereas gallidermin (6L-epidermin) was isolated from the closely related species Staphylococcus gallinarum. The biosynthesis of all four lantibiotics proceeds from structural genes which code for prepeptides that are enzymatically modified to give the mature peptides. The genes involved in biosynthesis, processing, export etc. are found in gene clusters adjacent to the structural genes and code for transporters, immunity functions, regulatory proteins and the modification enzymes LanB, LanC and LanD, which catalyze the biosynthesis of the rare amino acids. LanB and LanC are responsible for the dehydration of the serine and threonine residues to give dehydroalanine and dehydrobutyrine and subsequent addition of cysteine SH-groups to the dehydro amino acids which results in the thioether rings. EpiD, the only LanD enzyme known so far, catalyzes the oxidative decarboxylation of the C-terminal cysteine of epidermin which gives the C-terminal S-aminovinylcysteine after addition of a dehydroalanine residue.Abbreviations Dha 2,3-didehydroalanine - Dhb 2,3-didehydrobutyrine - Lan lanthionine - Melan methyllanthionine  相似文献   

6.
Lantibiotics such as gallidermin are lanthionine-containing polypeptide antibiotics produced by gram-positive bacteria that might become relevant for the treatment of various infectious diseases. So far, self-toxicity has prevented the isolation of efficient overproducing strains, thus hampering their thorough investigation and preventing their exploitation in fields other than the food area. We wanted to investigate the effect of lantibiotic precursor peptides on the producing strains in order to evaluate novel strategies for the overproduction of these promising peptides. In this study, gallidermin was chosen as a representative example of the type A lantibiotics. A Staphylococcus gallinarum Tü3928 mutant, whose gene for the extracellular pregallidermin protease GdmP was replaced by a kanamycin-resistance gene, was constructed. Mass spectrometry (MS) analysis indicated that this mutant produced fully posttranslationally modified gallidermin precursors with truncated versions of the leader peptide, but not the entire leader as predicted from the gdmA sequence. In filter-on-plate assays, these truncated pregallidermins showed no toxicity against Staphylococcus gallinarum Tü3928 up to a concentration of 8 g/liter (corresponding to approximately 2.35 mM), while gallidermin produced clear inhibitory zones at concentrations as low as 0.25 g/liter (0.12 mM). We showed that the lack of toxicity is due entirely to the presence of the truncated leader, since MS as well as bioassay analysis showed that the peptides resulting from tryptic cleavage of pregallidermins and gallidermin produced by S. gallinarum Tü3928 had identical masses and approximately the same specific activity. This demonstrates that even a shortened leader sequence is sufficient to prevent the toxicity of mature gallidermin. In nonoptimized fermentations, the gdmP mutant produced pregallidermin to a 50%-higher molar titer, suggesting that the absence of self-toxicity has a beneficial effect on gallidermin production and giving a first confirmation of the suitability of the overproduction strategy.  相似文献   

7.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

8.
The determination of the primary structure of peptides and proteins is routine in many laboratories; however, many of the obtained sequences are incomplete or can be misinterpreted when the samples contain unusual amino acids. Here we report the development of an automated peptide sequenator coupled to an electrospray-ionization (ESI) mass spectrometer (MS) that, in conjunction with minor modifications to the sequencing conditions and, in some cases, prior derivatization of amino acids, allows the detection of the phenylthiohydantoin (PTH) derivatives of a number of unusual amino acids. Using the coupled sequenator-ESI-MS system we were able to determine the complete sequence of the lantibiotic gallidermin, a partial sequence of the calcium-dependent peptide antibiotic CDA2 as well as the pool sequence of a mixture of synthetic peptides containing nonproteinogenic amino acids. In addition to the 20 proteinogenic amino acids, the procedure was able to detect PTH derivatives of hydroxyphenylglycine, 2,3-didehydroasparagine, 3-methylglutamic acid, oxytryptophan, ornithine, N-methylglycine, dihydroxyphenylalanine, and alpha-aminoisobutyric acid. Similarly, after a simple derivatization procedure, we were also able to correctly identify educts of 2,3-didehydroalanine, 2,3-didehydrobutyrine, lanthionine, and 3-methyllanthionine.  相似文献   

9.
A scale-up strategy into 200 l pilot-scale for the production of the antibiotic gallidermin by Staphylococcus gallinarum Tü 3928 was developed. Large-scale fermentations were simulated by consecutive liquid cultures of smaller scale. Afterwards, optimised cultivation conditions were transferred to pilot-scale. Best results were achieved by addition of Maltose during the late production phase leading to a final concentration of 330 mg gallidermin per litre. Compared to the concentrations found in a non-pulsed pilot-scale fermentations this is an increase of 20–30%.  相似文献   

10.
A new parameter could be introduced to facilitate the optimization of media used for cultivation of stock cultures on agar slants. This parameter reduces the amount of data generated in optimization experiments to one single value (hs-value) for each medium composition. The hs-value (high and stable product formation) allows an assessment of any medium formulation with regard to reproducibility and product formation, demonstrated for the production process of the antibiotic gallidermin by Staphylococcus gallinarum TÜ 3928. © Rapid Science Ltd. 1998  相似文献   

11.
Summary Submerged culture experiments were conducted to determine the optimal nitrogen source for rapidly producing conidia of the bioherbicide,Colletotrichum truncatum. Germination ofC. truncatum conidial inocula in submerged culture occurred most rapidly (>95% in 6 h) in media provided with a complete complement of amino acids. When (NH4)2SO4, urea, or individual amino acids were provided as the sole nitrogen source, conidial germination was less than 20% after 6 h incubation. Conidia production was delayed inC. truncatum cultures grown in media with urea or individual amino acids as nitrogen sources compared to cultures supplied with Casamino acids or complete synthetic amino acid nitrogen sources. The use of methionine, lysine, tryptophan, isoleucine, leucine or cysteine as a sole nitrogen source severely inhibitedC. truncatum conidia production. Media with synthetic amino acid mixtures less these inhibitory amino acids produced significantly higher conidia yields compared to media with amino acid mixtures containing these amino acids. When various amounts of each individual inhibitory amino acid were added to media which contained amino acid mixtures, cysteine and methionine were shown to be most effective in reducing conidiation. An optimal nitrogen source forC. truncatum conidiation in submerged culture should contain a complete mixture of amino acids with low levels of cysteine, methionine, leucine, isoleucine, lysine and tryptophan for rapid conidiation and optimal conidia yield.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

12.
In ostriches and pheasants, there is still limited information relating to staphylococci and their properties. Biogenic amines (BAs) are nitrogenous low-molecular-weight substances with biological functions in animals, plants and microorganisms. In this study, we focused on BA production by targeted faecal staphylococci from ostriches and pheasants and their sensitivity to lantibiotic bacteriocin gallidermin. Gallidermin belongs in a group of polycyclic proteinaceous antimicrobial substances. Thirty-six faecal staphylococci (24 strains from 140 ostriches, 12 from 60 pheasants) comprising different species were tested. Staphylococci from ostriches and pheasants did not produce tryptamine-TRYP, putrescine–PUT, cadaverine–CAD or histamine–HIS. Production of tyramine-TYM, phenylethylamine–PEA was high or very high (100–1000 mg/L). Production of spermine–SPM and spermidine–SPD by staphylococci was very low or low although in the case of staphylococci from pheasants medium production of SPM was found. Because of the risk posed by BAs for consumers, the control of BA-producing bacteria is important from the points of view not only of safety assessment of food-producing animals but also of human health safety. The sensitivity to gallidermin in biogenic amine-producing staphylococci from ostriches and pheasants detected here is the most promising indication for further application of gallidermin for veterinary purposes. The novelty of our study lies in testing the ability of faecal staphylococci from ostriches and pheasants to produce BAs and in their treatment with gallidermin which has so far not been tested in this way.  相似文献   

13.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

14.
Fink P  Pflitsch C  Marin K 《PloS one》2011,6(12):e28498
Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies--the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia.  相似文献   

15.
A. Wiemken  P. Nurse 《Planta》1973,109(4):293-306
Summary Two distinct amino-acid pools were demonstrated in the food yeast Candida utilis. Treatment of the cells with basic protein (cytochrome c) under isotonic conditions permeabilized the plasmalemma but left the tonoplast intact. The selective effect on these membranes was indicated by the observation of intact vacuoles but changed contrast of the cytoplasm in the phase-contrast microscope and by the free access of a chromogenic substrate to a cytoplasmic enzyme (-glucosidase). However, only 10–20% of the soluble amino acids were released from the cells and these had a rapid turnover as demonstrated by pulse labelling experiments using 14C(U)-arginine, 14C(U)-glucose, and 15N-ammonia. This indicates a rapidly metabolized amino-acid pool located within the cytoplasm. Osmotic shock with water following the treatment with basic protein disrupted the tonoplast, an event which could be followed by phase-contrast microscopy. Most of the remaining amino acids were then released. These showed a slow turnover in pulse-labelling experiments and a high proportion of basic, nitrogen-rich amino acids, indicative of a storage function. The significance of such vacuolar and cytoplasmic pools in the regulation of cellular metabolism is discussed.  相似文献   

16.
Genome-scale metabolic reconstructions are routinely used for the analysis and design of metabolic engineering strategies for production of primary metabolites. The use of such reconstructions for metabolic engineering of antibiotic production is not common due to the lack of simple design algorithms in the absence of a cellular growth objective function. Here, we present the metabolic network reconstruction for the erythromycin producer Saccharopolyspora erythraea NRRL23338. The model was manually curated for primary and secondary metabolism pathways and consists of 1,482 reactions (2,075 genes) and 1,646 metabolites. As part of the model validation, we explored the potential benefits of supplying amino acids and identified five amino acids “compatible” with erythromycin production, whereby if glucose is supplemented with this amino acid on a carbon mole basis, the in silico model predicts that high erythromycin yield is possible without lowering biomass yield. Increased erythromycin titre was confirmed for four of the five amino acids, namely valine, isoleucine, threonine and proline. In bioreactor experiments, supplementation with 2.5?% carbon mole of valine increased the growth rate by 20?% and simultaneously the erythromycin yield on biomass by 50?%. The model presented here can be used as a framework for the future integration of high-throughput biological data sets in S. erythraea and ultimately to realise strain designs capable of increasing erythromycin production closer to the theoretical yield.  相似文献   

17.
The biosynthetic gene clusters of the staphylococcal lantibiotics epidermin and gallidermin are distinguished by the presence of the unique genes epiH and gdmH, respectively. They encode accessory factors for the ATP-binding cassette transporters that mediate secretion of the antimicrobial peptides. Here, we show that gdmH also contributes to immunity to gallidermin but not to nisin. gdmH alone affected susceptibility to gallidermin only moderately, but it led to a multiplication of the immunity level mediated by the FEG immunity genes when cloned together with the gdmT gene, suggesting a synergistic activity of the H and FEG systems. gdmH-related genes were identified in the genomes of several bacteria, indicating an involvement in further cellular functions.  相似文献   

18.
Autonomous ultradian metabolic oscillation (T approximately or =50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by H2S burst production. As the production of H2S in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intracellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscillate with the same periods of dissolved O2 oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 microM) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous H2S production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of H2S. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved O2, NAD(P)H redox oscillations without burst H2 production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and H2 generation, rather than with direct GSH-GSSG redox control.  相似文献   

19.
The effects of amino acids on glutathione (GSH) production by Saccharomyces cerevisiae T65 were investigated in this paper. Cysteine was the most important amino acids, which increased intracellular GSH content greatly but inhibited cell growth at the same time. The suitable amino acids addition strategy was two-step addition: in the first step, cysteine was added after two hours culture to 2 mM and then, the three amino acids (glutamic acid, glycine, and serine) were added after seven hours culture. The optimum concentration of those three key amino acids (10 mM glutamic acid, 10 mM glycine, and 10 mM serine) was obtained by orthogonal matrix method. With the optimum amino acids addition strategy a 1.63% intracellular GSH content was obtained in shake flask culture. Intracellular GSH content was 55.2% higher than the experiments without three amino acids addition. The cell biomass and GSH yield were 9.4 g/L and 153.2 mg/L, respectively. Using this amino acids addition strategy in the fed-batch culture of S. cerevisiae T65, GSH content, the biomass, and GSH yield reached 1.41%, 133 g/L, and 1875 mg/L, respectively, after 44 hours fermentation. GSH yield was about 2.67 times as that of amino acids free.  相似文献   

20.
Pseudomonas aeruginosa was shown to utilize the majority of commonly occurring amino acids for growth as either the sole carbon or the sole nitrogen source. During carbon or nitrogen deprivation, the rates of transport of most of the amino acids remained unchanged; however, the transport rates for glutamate, alanine, and glycine increased under these conditions and the transport rates for leucine and valine decreased. Normal transport rates for these amino acids were resumed immediately upon the addition of the required nutrient. In the absence of an external source of carbon or of nitrogen, pool amino acids underwent rapid degradation. (14)C-Amino acid pulse experiments indicated that the constitutive amino acid catabolic enzymes, normally present in the organism during growth with glucose as the carbon source, were responsible for rapid pool losses. Nutrient starvation in the presence of chloramphenicol did not prevent amino acid catabolism. This enzymic activity is interpreted as providing P. aeruginosa with a selective advantage for survival during conditions of carbon or nitrogen starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号