首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3–4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4×10−14 M to 4.45×10−10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for various blots are possible.  相似文献   

2.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   

3.
Fetal calf serum asialofetuin was assayed in the sandwich format using biotinylated and fluoresceinated ricin toxin (B-RCA and F-RCA). The sandwiched species was captured on a biotin-BSA coated nitrocellulose membrane with streptavidin. Anti-fluorescein antibody-urease conjugate was bound to the complex, and detected and quantitated under microvolume conditions using the light addressable potentiometric sensor. As little as 250 pg of asialofetuin was detectable whereas fetuin gave no response at conditions as high as 32 ng. Using a competitive inhibition assay, we established that the binding constant for the asialofetuin-ricin complex was 3.6×108 m –1. This is in good agreement with data published using glycopeptides derived from asialofetuin, and RCA and the ricin agglutinin, RCA120.  相似文献   

4.
Biotin binding reduces the tryptophan fluorescence emissions of streptavidin by 39%, blue shifts the emission peak from 333 to 329 nm, and reduces the bandwidth at half height from 53 to 46 nm. The biotin-induced emission difference spectrum resembles that of a moderately polar tryptophan. Streptavidin fluorescence can be described by two lifetime classes: 2.6 nsec (34%) and 1.3 nsec (66%). With biotin bound, lifetimes are 1.3 nsec (26%) and 0.8 nsec (74%). Biotin binding reduces the average fluorescence lifetime from 1.54 to 0.88 nsec. Biotin does not quench the fluorescence of indoles. The fluorescence changes are consistent with biotin binding causing a conformational change which moves tryptophans into proximity to portions of streptavidin which reduce the quantum yield and lifetimes. Fluorescence quenching by acrylamide revealed two classes of fluorophores. Analysis indicated a shielded component comprising 20–28% of the initial fluorescence with (KSV+V)0.55 M–1. The more accessible component has a predominance of static quenching. Measurements of fluorescence lifetimes at different acrylamide concentrations confirmed the strong static quenching. Since static quenching could be due to acrylamide binding to streptavidin, a dye displacement assay for acrylamide binding was constructed. Acrylamide does bind to streptavidin (Ka=5 M–1), and probably binds within the biotin-binding site. In the absence of biotin, none of streptavidin's fluorescence is particularly accessible to iodide. In the presence of biotin, iodide neither quenches fluorescence nor alters emission spectra, and acrylamide access is dramatically reduced. We propose that the three tryptophans which always line the biotin site are sufficiently close to the surface of the binding site to be quenched by bound acrylamide. These tryptophans are shielded from iodide, most probably due to steric or ionic hindrances against diffusion into the binding site. Most of the shielding conferred by biotin binding can be attributed to the direct shielding of these residues and of a fourth tryptophan which moves into the binding site when biotin binds, as shown by X-ray studies (Weberet al., 1989).  相似文献   

5.
We have covalently attached multiple photoluminescent silicon nanoparticles (SNs) to streptavidin molecules. Conjugation of SNs to a target protein is achieved using the multistage photoassisted procedure. In a first step, the terminal hydrogen in the freshly prepared SNs is substituted with an alkane monolayer that serves as a platform for chemical linkage to a heterobifunctional cross-linker: 4-azido-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester. A resulting surface coating stabilizes nanoparticles against oxidation and aggregation. Next, an open end of bifunctional cross-linker-diazirine succinimidyl ester is reacted with carboxyl moieties of streptavidin and forms an amide bond. Gel and capillary electrophoresis of the SN-streptavidin complex demonstrated separate elution of the conjugation product and unreacted protein. Then, the number of SNs per protein molecule was determined by measuring complex charge variation by capillary electrophoresis. Conjugate functionality was tested by allowing it to interact with biotinylated polystyrene microbeads. Intense photoluminescence at carefully washed microbeads demonstrated selective binding of silicon nanoparticle bearing streptavidin to biotinylated microbeads. The high quantum yield of streptavidin-SN conjugate in combination with the small size and biocompatibility of silicon nanoparticles presents an attractive platform for the fluorescence labeling in diverse bioassays.  相似文献   

6.
A novel label-free biosensor concept based on surface plasmon-enhanced diffraction by micro- patterned interfaces was applied to the study of hybridization reactions of target DNA oligonucleotides (15mers and 75mers) from solution to probe DNA oligonucleotides attached via streptavidin to the sensor surface. The self-referencing and quadratic signal amplification mechanism of the sensor allowed highly sensitive detection of the hybridization process. Association and dissociation processes of DNA targets could be recorded in real time and used for the quantification of their binding affinities, which differ considerably with a single base pair mismatch. An equilibrium titration approach was also applied in order to obtain the binding affinities for 15mer targets, yielding similar affinity values. The hybridization efficiencies were found to be higher for the 15mers than for the 75mers, although the latter contained the same recognition sequences. The hybridization efficiency was shown to depend on the probe density and reached nearly 100% for the 15mer fully complementary targets at a probe density of ~1.2 × 1012 molecules/cm2. Using the assay as an end-point determination method, the lowest detectable coverage of a 15mer oligonucleotide was at least ~1.1 × 1011 molecules/cm2. The diffraction sensing concept offers a completely novel way to integrate a reference channel in large-scale, label-free screening applications, to improve the stability and to enhance the sensitivity of microarray read-out systems.  相似文献   

7.
Rat α-fetoprotein (α-FP) was isolated from amniotic fluid by an immuno-chemical procedure using high capacity immunoadsorbents. The yield was about 75 p. cent of the initial content in α-FP. The isolated α-FP was found pure by electrophoretic and immunochemical criteria. A molecular weight of 72.000 daltons and a sedimentation coefficient of 4.5 S were estimated by SDS-acrylamide-agarose electrophoresis and sucrose gradient centrifugation, respectively. The latter procedure was also used to study the binding activity of α-FP toward several steroids. All the estrogens tested, estrone, estradiol, estriol and diethylstylbestrol, were bound. By equilibrium dialysis, the intrinsic association constant of pure α-FP was 1 × 108M−1 for estrone and 6 × 107M−1 for estradiol. One molecule of estrone and estradiol was bound per molecule of protein. No significant binding was observed with testosterone and progesterone. The specificity of the estrophilic activity of α-FP appears as a characteristic property of this protein.After electrophoresis of pure α-FP in acrylamide-agarose gels of low porosity (11 p. cent of acrylamide monomer), two closely migrating but distinct bands could be demonstrated. Both forms possess estrogen-binding activity and common antigenic properties. The same molecular heterogeneity of α-FP was observed in whole amniotic fluid.  相似文献   

8.
Streptavidin is one of the most important hubs for molecular biology, either multimerizing biomolecules, bridging one molecule to another, or anchoring to a biotinylated surface/nanoparticle. Streptavidin has the advantage of rapid ultra-stable binding to biotin. However, the ability of streptavidin to bind four biotinylated molecules in a heterogeneous manner is often limiting. Here, we present an efficient approach to isolate streptavidin tetramers with two biotin-binding sites in a precise arrangement, cis or trans. We genetically modified specific subunits with negatively charged tags, refolded a mixture of monomers, and used ion-exchange chromatography to resolve tetramers according to the number and orientation of tags. We solved the crystal structures of cis-divalent streptavidin to 1.4 Å resolution and trans-divalent streptavidin to 1.6 Å resolution, validating the isolation strategy and explaining the behavior of the Dead streptavidin variant. cis- and trans-divalent streptavidins retained tetravalent streptavidin's high thermostability and low off-rate. These defined divalent streptavidins enabled us to uncover how streptavidin binding depends on the nature of the biotin ligand. Biotinylated DNA showed strong negative cooperativity of binding to cis-divalent but not trans-divalent streptavidin. A small biotinylated protein bound readily to cis and trans binding sites. We also solved the structure of trans-divalent streptavidin bound to biotin-4-fluorescein, showing how one ligand obstructs binding to an adjacent biotin-binding site. Using a hexaglutamate tag proved a more powerful way to isolate monovalent streptavidin, for ultra-stable labeling without undesired clustering. These forms of streptavidin allow this key hub to be used with a new level of precision, for homogeneous molecular assembly.  相似文献   

9.
A new electrochemical method to monitor biotin–streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin–streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at +0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at −0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0×10−5 M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25×10−15 to 2.24×10−12 M and a limit of detection of 2.0×10−15 M were obtained.  相似文献   

10.
A flat microdevice which incorporates a thin-film amorphous silicon (a-Si:H) photodetector with an upper layer of functionalized SiO2 is used to quantify the density of both immobilized and hybridized DNA oligonucleotides labeled with a fluorophore. The device is based on the photoconductivity of hydrogenated amorphous silicon in a coplanar electrode configuration. Excitation, with near UV/blue light, of a single-stranded DNA molecule tagged with the fluorophore 1-(3-(succinimidyloxycarbonyl)benzyl)-4-(5-(4-methoxyphenyl)oxazol-2-yl) pyridinium bromide (PyMPO), results in the emission of visible light. The emitted light is then converted into an electrical signal in the photodetector, thus allowing the optoelectronic detection of the DNA molecules. The detection limit of the present device is of the order of 1 × 1012 molecules/cm2 and is limited by the efficiency of the filtering of the excitation light. A surface density of 33.5 ± 4.0 pmol/cm2 was measured for DNA covalently immobilized to the functionalized SiO2 thin film and a surface density of 3.7 ± 1.5 pmol/cm2 was measured for the complementary DNA hybridized to the bound DNA. The detection concept explored can enable on-chip electronic data acquisition, improving both the speed and the reliability of DNA microarrays.  相似文献   

11.
A selective chemical photosynthesis inhibitor, DCMU (Dichorophenyl-dimethylurea), dissolved in DMSO (Dimethyl sulfoxide) was substituted for the dark incubation method commonly used to measure the oxygen consumption in metabolic and primary production studies. We compared oxygen fluxes during light incubations with DCMU and dark incubations procedure, on soft bottom benthos. For this purpose, we studied the effects of different DCMU concentrations. A concentration of 5 · 10–5 mol l–1 inside a clear incubation enclosure completely inhibits photosynthesis without affecting the metabolism of soft bottom benthos.  相似文献   

12.
We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membrane proteins from crude membrane preparations or cell lines. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. When these ConA magnetic beads were used to enrich plasma membranes from a crude membrane preparation, this procedure resulted in 3.7-fold enrichment of plasma membrane marker 5′-nucleotidase activity with 70% recovery of the activity in the crude membrane fraction of rat liver. In agreement with the results of 5′-nucleotidase activity, immunoblotting with antibodies specific for a rat liver plasma membrane protein, CEACAM1, indicated that CEACAM1 was enriched about threefold relative to that of the original membranes. In similar experiments, this method produced 13-fold enrichment of 5′-nucleotidase activity with 45% recovery of the activity from a total cell lysate of PC-3 cells and 7.1-fold enrichment of 5′-nucleotidase activity with 33% recovery of the activity from a total cell lysate of HeLa cells. These results suggest that this one-step purification method can be used to isolate total plasma membrane proteins from tissue or cells for the identification of membrane biomarkers.  相似文献   

13.
Peptides consisting solely of D -amino acids (D -peptides) as opposed to their L -counterparts (L -peptides) are resistant towards proteolytic degradation in the organism and may therefore be useful in future efforts to develop new stable peptide-based drugs. Using the random synthetic peptide library technique several L - and D -peptides, capable of binding to both avidin and streptavidin, were found. The L -peptides contained the previously described HPQ/M motifis, and among the D -peptides three binding motifs could be identified, of which the most frequently found one contained an N-terminal aliphatic hydrophobic amino acid (V, L or I) and an aromatic amino acid (Y or F) on the second position. At the third position in this motif several different amino acid residues were found, although N was the most frequent. Peptides representing two of the D -motifs were synthesized as well as peptides containing the HPQ/M motifs, and their binding properties were examined. Although the D -peptides were originally selected using avidin they also inhibited binding between immobilized biotin and soluble streptavidin as well as avidin. The IC50 of some of the peptides were approximately 105 times higher than the IC50 for biotin but some had a lower IC50 than iminobiotin. The D -peptides, which were originally selected from the library using avidin, could also inhibit the binding between streptavidin and biotin. Likewise, L -peptides selected from a library screened with streptavidin, could inhibit the binding of both streptavidin and avidin to immobilized biotin. Furthermore, the D -peptide, VFSVQSGS, as well as biotin could inhibit binding of streptavidin to an immobilized L -peptide (RYHPQSGS). This indicates that the biotin-like structure mimicked by these two seemingly very different peptides may react with the same binding sites in the streptavidin molecule.  相似文献   

14.
Summary It has previously been shown that a protein extracted fromGonyaulax polyedra strongly and specifically binds luciferin, the substrate of the bioluminescent reaction. This binding is markedly dependent on pH with tight binding at pH 8.0 and almost no binding at pH 6.5, as measured by two independent methods. A procedure for the determination of the dissociation constant (Kd) of the luciferin binding protein (LBP) is presented, and Kd is estimated to be7×10–9 M at pH 8.0, assuming an overall quantum yield of 0.1 for the bioluminescent reaction. With cells grown in a 12 h light — 12 h dark cycle, 5 to 10 times more LBP activity can be extracted from dark phase cells than from light phase cells. This rhythm persists in a circadian fashion in cultures maintained in constant dim light.Supported in part by a grant from the National Institutes of Health to J.W.H. (GM 19536)  相似文献   

15.
The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.  相似文献   

16.
Molecular models of six anthracycline antibiotics and their complexes with 32 distinct DNA octamer sequences were created and analyzed using HINT (Hydropathic INTeractions) to describe binding. The averaged binding scores were then used to calculate the free energies of binding for comparison with experimentally determined values. In parsing our results based on specific functional groups of doxorubicin, our calculations predict a free energy contribution of –3.6 ± 1.1 kcal mol–1 (experimental –2.5 ± 0.5 kcal mol–1) from the groove binding daunosamine sugar. The net energetic contribution of removing the hydroxyl at position C9 is –0.7 ± 0.7 kcal mol–1 (–1.1 ± 0.5 kcal mol–1). The energetic contribution of the 3′ amino group in the daunosamine sugar (when replaced with a hydroxyl group) is –3.7 ± 1.1 kcal mol–1 (–0.7 ± 0.5 kcal mol–1). We propose that this large discrepancy may be due to uncertainty in the exact protonation state of the amine. The energetic contribution of the hydroxyl group at C14 is +0.4 ± 0.6 kcal mol–1 (–0.9 ± 0.5 kcal mol–1), largely due to unfavorable hydrophobic interactions between the hydroxyl oxygen and the methylene groups of the phosphate backbone of the DNA. Also, there appears to be considerable conformational uncertainty in this region. This computational procedure calibrates our methodology for future analyses where experimental data are unavailable.  相似文献   

17.
Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.  相似文献   

18.
19.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

20.

Objective

Annexin A5 is a phosphatidylserine binding protein that binds dying cells in vivo. Annexin A5 is a potential molecular imaging agent to determine efficacy of anti-cancer therapy in patients. Its rapid clearance from circulation limits tumor uptake and, hence, its sensitivity. The aim of this study is to determine if non-invasive imaging of cell death in tumors will benefit from increasing circulation time of annexin A5 by increasing its size.

Procedures

Annexin A5 size was increased by complexation of biotinylated annexin A5 with Alexa-Fluor680-labeled streptavidin. The non-binding variant of annexin A5, M1234, was used as negative control. The HT29 colon carcinoma xenograft model in NMRI nude mice was used to measure tumor uptake in vivo. Tumor uptake of fluorescent annexin A5-variants was measured using non-invasive optical imaging.

Results

The annexin A5-streptavidin complex (4∶1, moles:moles, Mw ∼200 kDa) binds phosphatidylserine-expressing membranes with a Hill-coefficient of 5.7±0.5 for Ca2+-binding and an EC50 of 0.9±0.1 mM Ca2+ (EC50 is the Ca2+ concentration required for half maximal binding)(annexin A5: Hill-coefficient 3.9±0.2, EC50 1.5±0.2 mM Ca2+). Circulation half-life of annexin A5-streptavidin is ±21 minutes (circulation half-life of annexin A5 is ±4 min.). Tumor uptake of annexin A5-streptavidin was higher and persisted longer than annexin A5-uptake but depended less on phosphatidylserine binding.

Conclusion

Increasing annexin A5 size prolongs circulation times and increases tumor uptake, but decreases contribution of PS-targeting to tumor uptake and abolishes power to report efficacy of therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号