共查询到20条相似文献,搜索用时 0 毫秒
1.
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The larger values for residues 2-38 relative to those for residues 5-37 arise from the fact that the positions of the N- (residues 1-4) and C- (residues 38-39) terminal tails are rather poorly determined, whereas those of the core of the protein (residues 5-37) are well determined by the experimental interproton distance data. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contacts between CPI and carboxypeptidase in the X-ray structure. 相似文献
2.
The conformations of hirudin in solution: a study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics 下载免费PDF全文
The solution conformations of the protein hirudin have been investigated by the combined use of distance geometry and restained molecular dynamics calculations. The basis for the structure determination comprised 359 approximate inter-proton distance restrains and 10 phi backbone torsion angle restrains derived from n.m.r. measurements. It is shown that hirudin is composed of three domains: a central core made up of residues 3-30, 37-46 and 56-57; a protruding 'finger' (residues 31-36) consisting of the tip of an antiparallel beta sheet, and an exposed loop (residues 47-55). The structure of each individual domain is relatively well defined with average backbone atomic r.m.s. differences of <2 A between the final seven converged restrained dynamic structures and the mean structure obtained by averaging their coordinates. The orientation of the two minor domains relative to the central core, however, could not be determined as no long-range (i-h >5) interdomain proton-proton contacts could be observed in the two-dimensional nuclear Overhauser enhancement spectra. From the restrained molecular dynamics calculations it appears that the two minor domains exhibit large rigid-body motions relative to the central core. 相似文献
3.
The three-dimensional structure of alpha1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics 下载免费PDF全文
Clore GM Nilges M Sukumaran DK Brünger AT Karplus M Gronenborn AM 《The EMBO journal》1986,5(10):2729-2735
The determination of the three-dimensional solution structure of α1-purothionin using a combination of metric matrix distance geometry and restrained molecular dynamics calculations based on n.m.r. data is presented. The experimental data comprise complete sequence-specific proton resonance assignments, a set of 310 approximate interproton distance restraints derived from nuclear Overhauser effects, 27 Ø backbone torsion angle restraints derived from vicinal coupling constants, 4 distance restraints from hydrogen bonds and 12 distance restraints from disulphide bridges. The average atomic rms difference between the final nine converged structures and the mean structure obtained by averaging their coordinates is 1.5 ± 0.1 å for the backbone atoms and 2.0 ± 0.1 å for all atoms. The overall shape of α1-purothionin is that of the capital letter L, similar to that of crambin, with the longer arm comprising two approximately parallel α-helices and the shorter arm a strand and a mini anti-parallel β sheet. 相似文献
4.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel. 相似文献
5.
A M J?rgensen S M Kristensen J J Led P Balschmidt 《Journal of molecular biology》1992,227(4):1146-1163
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer. 相似文献
6.
The solution structure of the 64 residue structured domain (residues 20-83) of barley serine proteinase inhibitor 2 (BSPI-2) is determined on the basis of 403 interproton distance, 34 phi backbone torsion angle and 26 hydrogen bonding restraints derived from n.m.r. measurements. A total of 11 converged structures were computed using a metric matrix distance geometry algorithm and refined by restrained molecular dynamics. The average rms difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.2 A for the backbone atoms and 2.1 +/- 0.1 A for all atoms. The overall structure, which is almost identical to that found by X-ray crystallography, is disc shaped and consists of a central four component mixed parallel and antiparallel beta-sheet flanked by a 13 residue alpha-helix on one side and the reactive site loop on the other. 相似文献
7.
The polypeptide fold of the globular domain of histone H5 in solution. A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. 总被引:5,自引:2,他引:5 下载免费PDF全文
The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein. 相似文献
8.
The solution structure of tertiapin, a 21-residue bee venom peptide, has been characterized by circular dichroism (CD), two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and distance geometry. A total of 21 lowest error structures were obtained from distance geometry calculations. Superimposition of these structures shows that the backbone of tertiapin is very well defined. One type-I reverse turn from residue 4 to 7 and an α-helix from residue 12 to 19 exist in the structure of tertiapin. The α-helical region is best defined from both conformational analysis and structural superimposition. The overall three-dimensional structure of tertiapin is highly compact resulting from side chain interactions. The structural information obtained from CD and NMR are compared for both tertiapin and apamin (ref. 3), another bee venom peptide. Tertiapin and apamin have some similar secondary structure, but display different tertiary structures. © 1993 Wiley-Liss, Inc. 相似文献
9.
The solution structures of two alternating purine-pyrimidine octamers, [d(G-T-A-C-G-T-A-C)]2 and the reverse sequence [d(C-A-T-G-C-A-T-G)]2, are investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. Chemical shift assignments are obtained for non-exchangeable protons by a combination of two-dimensional correlation and nuclear Overhauser enhancement (NOE) spectroscopy experiments. Distances between protons are estimated by extrapolating distances derived from time-dependent NOE measurements to zero mixing time. Approximate dihedral angles are determined within the deoxyribose ring from coupling constants observed in one and two-dimensional spectra. Sets of distance and dihedral determinations for each of the duplexes form the bases for structure determination. Molecular dynamics is then used to generate structures that satisfy the experimental restraints incorporated as effective potentials into the total energy. Separate runs start from classical A and B-form DNA and converge to essentially identical structures. To circumvent the problems of spin diffusion and differential motion associated with distance measurements within molecules, models are improved by NOE-based refinement in which observed NOE intensities are compared to those calculated using a full matrix analysis procedure. The refined structures generally have the global features of B-type DNA. Some, but not all, variations in dihedral angles and in the spatial relationships of adjacent base-pairs are observed to be in synchrony with the alternating purine-pyrimidine sequence. 相似文献
10.
Solution structure of apamin determined by nuclear magnetic resonance and distance geometry 总被引:3,自引:0,他引:3
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 A. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the beta-turn (residues 2-5) and the C-terminal alpha-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods. 相似文献
11.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data. 相似文献
12.
The solution structure of a 12 base-pair DNA duplex containing the wt-lac promoter Pribnow sequence TATGTT has been studied by two-dimensional nuclear magnetic resonance spectroscopy. Proton assignments for the 24 sugar and base residues were obtained from two-dimensional correlated nuclear magnetic resonance and two-dimensional nuclear Overhauser effect spectra in both 2H2O and H2O, and by two-dimensional relayed coherence transfer nuclear magnetic resonance spectroscopy experiments. Time-dependent, two-dimensional nuclear Overhauser effect spectra were used to determine the initial cross-relaxation rates between 212 pairs of assigned protons, leading to 212 interproton distances in the double helix (8 to 9 per nucleotide). These distance constraints, and known bond lengths and angles, were entered into a distance matrix. After smoothing the bounds of the distance matrix, 12 trial matrices within the bounds constraints were independently generated and embedded in three-dimensional space using a distance geometry algorithm, to generate 12 trial structures. These trial structures were then refined until they no longer violated the distance matrix. The resulting structures are very similar at the local base-pair and nearest-neighbor base-pair level, but exhibit increasing variation at more distant and global levels. At the nearest-neighbor level, the A to T step and the G to T step within the Pribnow hexamer, as well as the G to T step preceding the hexamer, all exhibit very low screw pitch, i.e. 5(+/- 6) degrees. Conversely, the T to G step in the center of the promoter has a large screw pitch (47(+/- 2) degrees) and the T to G step at the 3' end of the promoter has a very large screw pitch (60(+/- 3) degrees). The limitations of nuclear magnetic resonance spectroscopy distance determination of structure are discussed in terms of resolution and spectral overlap of two-dimensional nuclear Overhauser effect crosspeaks. In the present duplex, the inability to measure several 1'-2' and 1'-2" distances resulted in underdetermination of the precise local sugar conformation for seven of the 24 residues, although the spatial position of all sugars was well defined. 相似文献
13.
Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study 总被引:11,自引:0,他引:11
The solution structure of human insulin-like growth factor 1 has been investigated with a combination of nuclear magnetic resonance and restrained molecular dynamics methods. The results show that the solution structure is similar to that of insulin, but minor differences exist. The regions homologous to insulin are well-defined, while the remainder of the molecule exhibits greater disorder. The resultant structures have been used to visualize the sites for interaction with a number of physiologically important proteins. 相似文献
14.
H Darbon J M Bernassau C Deleuze J Chenu A Roussel C Cambillau 《European journal of biochemistry》1992,209(2):765-771
The solution structure of human neuropeptide Y has been solved by conventional two-dimensional NMR techniques followed by distance-geometry and molecular-dynamics methods. The conformation obtained is composed of two short contiguous alpha-helices comprising residues 15-26 and 28-35, linked by a hinge inducing a 100 degree angle. The first helix (15-26) is connected to a polyproline stretch (residues 1-10) by a tight hairpin (residues 11-14). The helices and the polyproline stretch are packed together by hydrophobic interactions. This structure is related to that of the homologous avian pancreatic polypeptide and bovine pancreatic polypeptide. The C- and N-terminii, known to be involved in the biological activity for respectively the receptor binding and activation, are close together in space. The side chains of residues Arg33, Arg35 and Tyr36 on the one hand, and Tyr1 and Pro2 on the other, form a continuous solvent-exposed surface of 4.9 mm2 which is supposed to interact with the receptor for neuropeptide Y. 相似文献
15.
Barthwal R Awasthi P Monica Kaur M Sharma U Srivastava N Barthwal SK Govil G 《Journal of structural biology》2004,148(1):34-50
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands. 相似文献
16.
J de Vlieg R M Scheek W F van Gunsteren H J Berendsen R Kaptein J Thomason 《Proteins》1988,3(4):209-218
The technique of two-dimensional nuclear magnetic resonance (2D-NMR) has recently assumed an active role in obtaining information on structures of polypeptides, small proteins, sugars, and DNA fragments in solution. In order to generate spatial structures from the atom-atom distance information obtained by the NMR method, different procedures have been developed. Here we introduce a combined procedure of distance geometry (DG) and molecular dynamics (MD) calculations for generating 3D structures that are consistent with the NMR data set and have reasonable internal energies. We report the application of the combined procedure on the lac repressor DNA binding domain (headpiece) using a set of 169 NOE and 17 "hydrogen bond" distance constraints. Eight of ten structures generated by the distance geometry algorithm were refined within 10 ps MD simulation time to structures with low internal energies that satisfied the distance constraints. Although the combination of DG and MD was designed to combine the good sampling properties of the DG algorithm with an efficient method of lowering the internal energy of the molecule, we found that the MD algorithm contributes significantly to the sampling as well. 相似文献
17.
Barthwal R Monica Awasthi P Srivastava N Sharma U Kaur M Govil G 《Journal of biomolecular structure & dynamics》2003,21(3):407-423
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding. 相似文献
18.
Solution structure of human calcitonin gene-related peptide by 1H NMR and distance geometry with restrained molecular dynamics 总被引:2,自引:0,他引:2
The structure of human calcitonin gene-related peptide 1 (hCGRP-1) has been determined by 1H NMR in a mixed-solvent system of 50% trifluoroethanol/50% H2O at pH 3.7 and 27 degrees C. Complete resonance assignment was achieved by using two-dimensional methods. Distance restraints for structure calculations were obtained by semiquantitative analysis of intra- and interresidue nuclear Overhauser effects; in addition, stereospecific or X1 rotamer assignments were obtained for certain side chains. Structures were generated from the distance restraints by distance geometry, followed by refinement using molecular dynamics, and were compared with experimental NH-C alpha H coupling constants and amide hydrogen exchange data. The structure of hCGRP-1 in this solvent comprises an amino-terminal disulfide-bonded loop (residues 2-7) leading into a well-defined alpha-helix between residues 8 and 18; thereafter, the structure is predominantly disordered, although there are indications of a preference for a turn-type conformation between residues 19 and 21. Comparison of spectra for the homologous hCGRP-2 with those of hCGRP-1 indicates that the conformations of these two forms are essentially identical. 相似文献
19.
The DNA octamer [d(GTATAATG].[(CATATTAC)], containing the prokaryotic upstream consensus recognition sequence, has been examined via proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra. All proton resonances, except those of H5' and H5" protons, were assigned. A temperature dependence study of one-dimensional nuclear magnetic resonance (NMR) spectra, rotating frame 2D NOE spectroscopy (ROESY), and T1 rho measurements revealed an exchange process that apparently is global in scope. Work at lower temperatures enabled a determination of structural constraints that could be employed in determination of a time-averaged structure. Simulations of the 2QF-COSY cross-peaks were compared with experimental data, establishing scalar coupling constant ranges of the individual sugar ring protons and hence pucker parameters for individual deoxyribose rings. The rings exhibit a dynamic equilibrium of N and S-type conformers with 80 to 100% populations of the latter. A program for iterative complete relaxation matrix analysis of 2D NOE spectral intensities, MARDIGRAS, was employed to give interproton distances for each mixing time. According to the accuracy of the distance determination, upper and lower distance bounds were chosen. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force-field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 25 picoseconds were performed, utilizing 184 experimental distance constraints and 80 torsion angle constraints; three different starting structures were used: energy minimized A-DNA, B-DNA, and wrinkled D-DNA, another member of the B-DNA family. Convergence to similar structures obtained with root-mean-square deviations between resulting structures of 0.37 to 0.92 A for the central hexamer of the octamer. The average structure from the nine different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and exhibited a substantial improvement in the 2D NOE sixth-root residual index in comparison with the starting structures. An approximation of the structure in the terminal base-pairs, which displayed experimental evidence of fraying, was made by maintaining the structure of the inner four base-pairs and performing molecular dynamics simulations with the experimental structural constraints observed for the termini.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
20.
Solution conformation of endothelin determined by nuclear magnetic resonance and distance geometry 总被引:1,自引:0,他引:1
The solution conformation of endothelium-derived vasoconstrictor peptide, endothelin, has been determined by two-dimensional 1H-NMR spectroscopy and distance geometry. Conformation in the N-terminal core region (residues 1-15) is well-defined and a characteristic is the helix-like conformation in the segment from Lys9 to Cys15. Contrarily, the C-terminal tail region (residues 16-21) does not assume a defined conformation and there are no specific interactions between the core and the tail regions. 相似文献