首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete amino acid sequence of PepM49, a peptic fragment of the group A streptococcal type 49 M protein, the antiphagocytic cell surface molecule of the bacteria, is described. This fragment retains the opsonic antibody epitope of the native molecule. The sequence of PepM49, as determined by automated Edman degradations of the uncleaved molecule, and its tryptic and chymotryptic peptides, consists of a total of 143 residues (Mr = 17,187). PepM49, a nephritis-associated M protein serotype, exhibits significant internal homology in its sequence. However, identical sequence repeats of the kind seen in the rheumatic fever-associated serotypes M5, M6, and M24, are absent in PepM49. PepM49 exhibits varying degrees of homology with the M5, M6, and M24 proteins, which is consistent with the existence of variable and conserved regions in the M protein molecule. Predictive analysis as well as CD measurements revealed a high propensity of the PepM49 molecule to assume an alpha-helical conformation. Furthermore, a heptad periodicity of the nonpolar residues, a characteristic of alpha-helical coiled-coil proteins, extends over the entire length of the PepM49 protein. The differences in the nonpolar residue distribution divide the PepM49 sequence into three distinct domains, similar to those seen earlier in the M5 and M6 proteins. Together, these studies establish a conserved conformational design for the sequentially diverse M protein serotypes. However, the pattern of heptad periodicity in the PepM49 protein is quite distinct from that present in the PepM5 and M6 proteins, suggesting distinct differences in structural features among conformationally similar M protein serotypes. This may have relevance to the pathological differences associated with these M protein serotypes.  相似文献   

2.
S-Aminoethylated-alpha A and -beta A globin tryptic peptides separated by reversed-phase high-performance liquid chromatography have been analysed by plasma desorption mass spectrometry. Almost all the expected alpha A and beta A tryptic fragments were tentatively assigned relative to the known globin chain sequences based on the molecular weight obtained by plasma desorption mass spectrometric analysis of the purified peptides. The application of plasma desorption mass spectrometry for structure elucidation of a haemoglobin alpha-chain variant revealed the first case of Hb Hasharon in Hungary.  相似文献   

3.
4.
Oxidative addition of a nitric oxide (NO) molecule to the thiol group of cysteine residues is a physiologically important post-translational modification that has been implicated in several metabolic and pathophysiological events. Our previous studies have indicated that S-nitrosylation can result in the disruption of the endothelial NO synthase (eNOS) dimer. It has been suggested that for S-nitrosylation to occur, the cysteine residue must be flanked by hydrophilic residues either in the primary structure or in the spatial proximity through appropriate conformation. However, this hypothesis has not been confirmed. Thus, the objective of this study was to determine if the nature of the amino acid residues that flank the cysteine in the primary structure has a significant effect on the rate and/or specificity of S-nitrosylation. To accomplish this, we utilized several model peptides based on the eNOS protein sequence. Some of these peptides contained point mutations to allow for different combinations of amino acid properties (acidic, basic, and hydrophobic) around the cysteine residue. To ensure that the results obtained were not dependent on the nitrosylation procedure, several common S-nitrosylation techniques were used and S-nitrosylation followed by mass spectrometric detection. Our data indicated that all peptides independent of the amino acids surrounding the cysteine residue underwent rapid S-nitrosylation. Thus, there does not appear to be a profound effect of the primary sequence of adjacent amino acid residues on the rate of cysteine S-nitrosylation at least at the peptide levels. Finally, our studies using recombinant human eNOS confirm that Cys98 undergoes S-nitrosylation. Thus, our data validate the importance of Cys98 in regulating eNOS dimerization and activity, and the utility of mass spectroscopy to identify cysteine residues susceptible to S-nitrosoylation.  相似文献   

5.
6.
7.
The protein covalently bound to the 5' termini of adenovirus type 2 DNA has been purified from virus labeled with [35S]methionine, using exclusion chromatography of disrupted virions to isolate the DNA-protein complex, which is then digested with DNase. The terminal protein isolated from mature virus is most effectively labeled if the cells are exposed to [35S]methionine during the "intermediate" period of 13 to 21 h postinfection, suggesting that the protein is synthesized during this interval. The tryptic peptides of the terminal protein were compared with those of several known adenovirus-coded proteins and found to be unrelated. In particular, the terminal protein is not related to the 38-50K early proteins encoded by the leftmost 4.4% of the adenovirus genome, one region essential for the transforming activity of the virus. Neither is it related to the 72K single-strand-specific DNA binding protein, the minor virion component IVa2, or the major capsid component hexon.  相似文献   

8.
1. On exhaustive digestion of carboxymethylated actin in 6m-urea solutions with carboxypeptidase A, 1 mole of phenylalanine was liberated/43000g. of protein. At a lower urea concentration and in the absence of urea, carboxymethyl-cysteine (CMCys) was also liberated. 2. Three cysteine-containing peptides were identified by the study of peptide ;maps' of tryptic digests of actin treated with thiol reagents. 3. The three peptides, each containing one residue of CMCys, were isolated from tryptic digests of carboxymethylated actin by ion-exchange chromatography. 4. One of these peptides was possibly the N-terminal peptide and contained about 17-18 residues; another was CMCys-Asp-Ile-Asp-Ile-Arg; the other, CMCys-Phe, was the C-terminal tryptic peptide. 5. The chemical evidence suggests that the actin molecule consists of a single polypeptide chain of molecular weight about 44000.  相似文献   

9.
Pflieger D  Bigeard J  Hirt H 《Proteomics》2011,11(9):1824-1833
The components that enable cells and organisms to fulfill a plethora of chemical and physical reactions, including their ability to metabolize, replicate, repair and communicate with their environment are mostly based on the functioning of highly complex cellular machines which are to a large extent composed of proteins. With the development of MS techniques compatible with the analysis of minute amounts of biological material, it has become more and more feasible to dissect the composition and modification of these protein machineries. Indeed, new purification methods of protein complexes followed by MS analysis together with the genomic sequencing of various organisms - and in particular of crop species - now provide unforeseen insight to understand biological processes at a molecular level. We here review the current state of the art of in vivo protein complex isolation and their MS-based analytical characterization, emphasizing on the tandem affinity purification approach.  相似文献   

10.
11.
Protein oxidation by reactive oxygen species has been associated with aging and neurodegenerative disorders, and histidine is one of the major oxidation targets due to its metal‐chelating property and susceptibility to metal‐catalyzed oxidation. 2‐Oxohistidine, the major product of histidine oxidation, has been recently identified as a stable marker of oxidative damage in biological systems, but its biophysical and biochemical properties are understudied, partly because of difficulties in its chemical synthesis. We developed an efficient method to generate a 2‐oxohistidine side chain using metal‐catalyzed oxidation, applicable to both monomers and peptides. By optimizing reagent ratios and pH buffering in Cu2+/ascorbate/O2 reaction system, we improved the yield more than tenfold compared to reported conditions, which allowed us to obtain homogeneously modified 2‐oxohisidine peptides for further studies. Analysis of 2‐oxohistidine‐containing model peptides by liquid chromatography‐tandem mass spectrometry demonstrated increased retention time in reverse‐phase chromatography and general stability of 2‐oxohistidine under electrospray ionization and collision‐induced dissociation. Thus, large‐scale analysis of 2‐oxohistidine‐modified proteome should be feasible using shotgun protein mass spectrometry, and we were able to observe such peptides in proteomics datasets. The feasibility of acquiring purified peptide probes and peptide antigens containing 2‐oxohistidine will help advance the study of this non‐enzymatic posttranslational modification. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
13.
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.  相似文献   

14.
The amino acid sequence of the cyanogen bromide fragment 5 of streptococcal proteinase has been determined. This fragment comprises residues 130 to 253 of the proteinase chain. Six tryptic peptides were isolated from maleylated cyanogen bromide fragment 5, and their alignment was obtained by the overlap of chymotryptic peptides. Sequence analysis of tryptic, chymotryptic, and thermolysin peptides was performed by the 5-deimethylaminoaphthalene-1-sulfonyl technique and carboxypeptidases digestion.  相似文献   

15.
A simple technique is described for continuous labeling of mammalian DNA with radioactive precursors adsorbed onto activated charcoal and administered by a single intraperitoneal injection. It is shown that adsorbed labeled thymidine is available in the organism for incorporation into DNA for at least 50 hr.The same technique can be used to substitute up to 20% of the thymidine with 5-bromodeoxyuridine in regenerating rat liver.  相似文献   

16.
We report the design, chemical synthesis, and structural and functional characterization of a novel reagent for protein sequence analysis by the Edman degradation, yielding amino acid derivatives rapidly detectable at high sensitivity by ion-evaporation mass spectrometry. We demonstrate that the reagent 3-[4'(ethylene-N,N,N-trimethylamino)phenyl]-2-isothiocyanate is chemically stable and shows coupling and cyclization/cleavage yields comparable to phenylisothiocyanate, the standard reagent in chemical sequence analysis, under conditions typically encountered in manual or automated sequence analysis. Amino acid derivatives generated with this reagent were detectable by ion-evaporation mass spectrometry at the subfemtomole sensitivity level at a pace of one sample per minute. Furthermore, derivatives were identified by their mass, thus permitting the rapid and highly sensitive determination of the molecular nature of modified amino acids. Derivatives of amino acids with acidic, basic, polar, or hydrophobic side chains were reproducibly detectable at comparable sensitivities. The polar nature of the reagent required covalent immobilization of polypeptides prior to automated sequence analysis. This reagent, used in automated sequence analysis, has the potential for overcoming the limitations in sensitivity, speed, and the ability to characterize modified amino acid residues inherent in the chemical sequencing methods that are currently used.  相似文献   

17.
Reversed-phase HPLC (RP-HPLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) were used to characterize the transglutaminase (TGase)-catalyzed dual modification of a peptide (EAQQIVM, named FibN) with monodansylcadaverine (MDC). The synthesized FibN peptide, which was derived from the N-terminal sequence of fibronectin, was used as the substrate for a guinea pig liver TGase (G-TGase). The time course of incorporation of MDC into FibN, detected by RP-HPLC, indicated two separate fluorescent product peaks. ESI-MS analysis of the isolated fractions indicated that products represented MDC-incorporated FibN molecules in molar ratios of 1:1 ((MDC)-FibN) and 2:1 ((MDC)2-FibN). A sequence analysis of MDC-FibN, using ESI-MS/MS, showed that the first modified residue in FibN was mainly Gln3. The kinetic analysis of MDC incorporation suggested that dual incorporation would occur by mainly one route. A one-dimensional 1H NMR comparison of MDC-FibN and unmodified FibN suggested that the first incorporation of MDC at Gln3 altered the substrate reactivity of the Gln4 residue in FibN for the G-TGase-catalyzed reaction. Thus, a detailed analysis of the peptide products using RP-HPLC and ESI-MS/MS should provide a powerful tool for exploring the mechanism of the substrate requirements of TGases.  相似文献   

18.
19.
Hydrolysis with trypsin of citraconyl-carboxy-methyl-beta-galactosidase was carried out under limiting conditions. No Asp-Arg-X sequences were cleaved and many large peptides were produced. Butanol extraction from dilute acid proved very useful for separating the more hydrophobic fragments. Peptides were purified and sequenced. From this digest and two earlier preparations, all 80 theoretically possible tryptic fragments have been isolated and their structures determined.  相似文献   

20.
Hollemeyer K  Heinzle E  Tholey A 《Proteomics》2002,2(11):1524-1531
Oxidation of methionine residues in peptides and proteins occurs in vivo or may be an artifact resulting from purification steps. We present a three step method for the localization of methionine sulfoxides in peptides with two methionine residues. In the first step, the N-terminus as well as other reactive side chain functions are blocked by acetylation. The resulting protected peptides are cleaved by cyanogen bromide. The cleavage does not occur at methionine sulfoxide but only at reduced methionine residues forming new amino termini. The newly formed amino group is then derivatized with a bromine containing compound in the last step of the procedure. The resulting peptide can easily be identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry using both the characteristic isotope pattern of the halogen and the metastable loss of methanesulfenic acid from oxidized residues. This procedure allows the unequivocal localization of oxidized methionines even in complex peptide mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号