首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Studies have been made on the ultrastructure of cardiomyocytes during hibernation and arousal of the ground squirrel C. undulatus. It was found that the number of elements of the rough endoplasmic reticulum, Golgi complex, vesicles and ribosomes increases in the perinuclear areas of cardiomyocytes during arousal of animals. These areas are saturated with lipid inclusions and mitochondria. Numerous vesicles and fringed bubbles were found near the plasma membrane which has many caveolae. These findings may indicate the intense metabolism of the membrane material between plasmalemma and cytoplasmic vesicles. Possible mode of rapid reorganization of the sarcolemma and changes in its functional properties during hibernation-arousal stages are suggested. It is concluded that apart from structural and functional properties which are acquired by cells during preparation of animals to hibernation and which exhibit only small changes during the whole period of hibernation, cyclic changes in plasmalemma structure and function occur during arousal of the ground squirrels.  相似文献   

2.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

3.
Even though the existence of the blood-borne "hibernation induction trigger" has been reported in the 13-lined ground squirrel, transfusion of plasma from hibernating rodents with other hibernating species as the recipients failed to induce the occurrence of summer hibernation. In order to verify whether the response to the "trigger" substance is species specific, the present study was carried out to compare the effect of plasma from hibernating Richardson's ground squirrels on the incidence of summer hibernation in both juvenile Richardson's and adult 13-lined ground squirrels. In two series of experiments, 13-lined ground squirrels entered hibernation quite readily independent of the treatment. The rate of occurrence of hibernation ranged from 78% after sham injection to 86% after warm saline, fresh summer active plasma, and fresh hibernating plasma, respectively. There were no differences in the number of hibernation bouts and the number of days in hibernation after each treatment. In contrast, none of the juvenile Richardson's ground squirrels entered hibernation after any of the treatments up to the end of the 8-week observation period. These results not only argue against the existence of blood-borne "trigger" substance, at least in the Richardson's ground squirrel, but also caution against the use of the 13-lined ground squirrel as a standard test animal for the bioassay of the "trigger" substance.  相似文献   

4.
Spontaneous diabetes mellitus was diagnosed in six of 126, 13-lined ground squirrels, Citellus tridecemlineatus. Serum glucose values were significantly higher in the diabetic ground squirrels than in the non-diabetic ground squirrels, while serum insulin values of fasted diabetic squirrels were significantly lower than fasted nondiabetic ground squirrels. In addition, the classic diabetic signs of poly-dipsia, polyuria, glycosuria, ketonuria, polyphasia, and weight loss were present. The proportion of islet tissue to total pancreatic area in diabetic ground squirrels was less than 25% of that in the nondiabetic ground squirrels. Both the number and size of the islets of Langerhans in diabetic ground squirrels were less than those in nondiabetic ground squirrels.  相似文献   

5.
(1) Tyrosine and tryptophan metabolism in brain and peripheral tissues were studied in hypothermic hibernating and normothermic nonhibernating 13-lined ground squirrels (Spermophilus tridecemlineatus). (2) In the hypothermic hibernating state, there were significant elevations of brain stem tyrosine, norepinephrine, and dopamine levels; forebrain norepinephrine and dopamine levels; and cerebellum norepinephrine and tyrosine levels. (3) On the other hand, plasma norepinephrine levels were significantly decreased in hypothermic hibernating squirrels while plasma tyrosine levels were increased. Kidney norepinephrine levels were significantly increased in hypothermic hibernating squirrels, while kidney tyrosine levels were decreased. Total plasma tryptophan and free plasma tryptophan were significantly reduced in hypothermic hibernating squirrels. Hepatic tyrosine aminotransferase Km and Vmax were decreased in hypothermic hibernating squirrels, while tryptophan 2,3-dioxygenase activity was not altered. Plasma and liver albumin were increased in hypothermic hibernating squirrels, while plasma and liver total protein were not altered. (4) These results demonstrate that significant changes in tyrosine and tryptophan metabolism occur in both central and peripheral tissues with concomitant alterations in metabolites during hypothermic hibernation in 13-lined ground squirrels.  相似文献   

6.
The Na,K-ATPase activity in microsomal fraction isolated from kidneys of winter hibernating ground squirrels was found to be 1.8–2.0-fold lower than that in active animals in summer. This is partially connected with a decrease in Na,K-ATPase protein content in these preparations (by 25%). Using antibodies to different isoforms of Na,K-ATPase α-subunit and analysis of enzyme inhibition by ouabain, it was found that the decrease in Na,K-ATPase activity during hibernation is not connected with change in isoenzyme composition. Seasonal changes of Na,K-ATPase a-subunit phosphory- lation level by endogenous protein kinases were not found. Proteins which could be potential regulators of Na,K-ATPase activity were not found among phosphorylated proteins of the microsomes. Analysis of the composition and properties of the lipid phase of microsomes showed that the total level of unsaturation of fatty acids and the lipid/protein ratio are not changed significantly during hibernation, whereas the cholesterol content in preparations from kidneys of hibernating ground squirrels is approximately twice higher than that in preparations from kidneys of active animals. However, using spin and fluorescent probes it was shown that this difference in cholesterol content does not affect the integral membrane micro-viscosity of microsomes. Using the cross-linking agent cupric phenanthroline, it was shown that Na,K-ATPase in mem- branes of microsomes from kidneys of hibernating ground squirrels is present in more aggregated state in comparison with membranes of microsomes from kidneys of active animals. We suggest that the decrease in Na,K-ATPase activity in kidneys of ground squirrels during hibernation is mainly connected with the aggregation of proteins in plasma membrane.  相似文献   

7.
Preparation of sarcolemma from whole rabbit heart using the method of Jones et al. (Jones,L.R., Besch, H.R., Fleming, J.W., McConnaughey, M.M. and Watanabe, A.M. (1979) J. Biol. Chem. 254, 530-539) results in a 46-fold purification of the endothelial plasmalemma-specific marker angiotensin converting enzyme. This implies contamination of the sarcolemma with vascular endothelial plasmalemma. During preparation of sarcolemma from sheep heart, using the same method, angiotensin converting enzyme copurified with the general plasma membrane marker (Na+ + K+)-ATPase. The ratio of myocyte to endothelial plasma membrane in the final preparation is therefore similar to that in the whole heart homogenate. Ultrastructural analysis has shown that the myocyte/endothelial surface area is 70:30 in whole cardiac muscle. Comparison of angiotensin converting enzyme activity of an endothelial plasma membrane fraction with that of whole heart sarcolemma suggests an upper limit of 42% for endothelial contamination. Contamination by endothelial plasmalemma was dramatically reduced by preparing sarcolemma from myocytes produced by proteolytic disruption of whole hearts. Following disruption, myocytes were separated from non-muscle cells by sedimentation through 0.5 M sucrose. Sarcolemma prepared from sheep cardiac myocytes had approximately 15-fold less angiotensin converting enzyme activity than whole sheep heart sarcolemma but comparable ouabain-inhibitable (Na+ + K+)-ATPase activity.  相似文献   

8.
1. The concentrations of total cholesterol (free cholesterol plus cholesteryl ester) in the plasma and in two lipoprotein fractions of golden-mantled ground squirrels (Spermophilus lateralis) were measured during pre-hibernation and compared to those values measured during hibernation. 2. Hibernating ground squirrels had significantly higher (P less than 0.005) very low density lipoprotein plus low density lipoprotein cholesterol (VLDL + LDL-C) concentrations than did pre-hibernating ground squirrels. 3. Hibernating squirrels additionally exhibited significantly higher (P less than 0.005) total plasma cholesterol concentration per high density lipoprotein cholesterol concentration (TPC/HDL-C) ratios than did pre-hibernating squirrels. 4. The significant differences in the lipoprotein cholesterol concentrations observed in this study suggest that lipoprotein metabolism in pre-hibernators was significantly different from that in hibernators and was a reflection of the marked biochemical and physiological adjustments these animals must undergo during their transition from pre-hibernation to hibernation.  相似文献   

9.
The rate of respiration and ATP synthesis in liver mitochondria (M) isolated from hibernating ground squirrels and incubated in the medium with normal tonicity (250 mosm) was shown to be considerably lower than the rate of respiration and ATP synthesis in liver M from active animals. The increase of the medium tonicity to 600 mosm simulated the state of M from hibernating animals, resulting in a decrease of the respiration rate of M from active ground squirrels. On the contrary, the decrease of the tonicity to 60 mosm caused the activation of the respiration and increase of the ATP synthesis in M from hibernating ground squirrels. Bromophenacylbromide (BPhB), an inhibitor of phospholipase A2, prevented the activation of the respiration of M from hibernating animals incubated in the medium with low tonicity. BPhB had practically no effect on the respiration of M from both hibernating and active ground squirrels as well as on the swelling of M in hypotonic medium. It was concluded that the activation of the respiration and increase of the ATP synthesis rate in M from hibernating ground squirrels incubated in the medium with low tonicity is related to the activation of phospholipase A2. It was assumed that decrease of phospholipase A2 activity and change in the lipid composition of mitochondrial membrane may be one of the reasons for inhibition of the respiration rate in M from hibernating ground squirrels.  相似文献   

10.
The antioxidant defenses of the liver, erythrocytes, blood plasma, and interscapular brown adipose tissue (IBAT) of male ground squirrels were compared with those of male rats kept under identical conditions and fed the same diet. Superoxide dismutase (SOD), ascorbate, vitamin E, catalase, glutathione, and enzymes of glutathione metabolism were measured. In general, antioxidant defenses in erythrocytes were lower in ground squirrels than in rats. The same was true in liver, except that catalase-specific activity was higher. In IBAT, ascorbate, vitamin E, catalase, and glutathione reductase were higher than in rat and more of the SOD activity present was cyanide-insensitive (MnSOD). It is suggested that IBAT in ground squirrels may need a relatively greater antioxidant defense because of its important role in thermogenesis, especially in reawakening from hibernation. No major differences in antioxidant defenses between male and female ground squirrels were observed, except that the SOD activity of IBAT was higher in females.  相似文献   

11.
Summer hibernation in ground squirrels (Citellus tridecemlineatus) can be induced by intravenous injection of hibernation-induction trigger (HIT) from winter bear plasma or its albumin fraction. In this study, we show that bear HIT depresses electrically-induced contraction of the guinea pig ileum myenteric plexus-longitudinal muscle preparation, and that naloxone, at 100, 1,000, or even 4,000 nM, fails to reverse that effect. In a simultaneous study, four sets of ground squirrels were implanted with osmotic minipumps which delivered solutions at a controlled and continuous rate. Two of the groups had pumps delivering naloxone at 1 mg/kg body weight per hour. The other two groups had saline-filled pumps (controls). One set of squirrels from each of the saline- and naloxone-filled pump groups were then injected intravenously with winter bear plasma. The remaining two groups of squirrels were injected with winter bear albumin fraction. Hibernation frequency was determined by measurements of core temperature (from surgically-implanted radio capsules), respiratory rate, and bouts of activity. Squirrels with saline-filled pumps hibernated four times more frequently than the naloxone groups. To confirm these findings, three squirrels from each naloxone group were reinjected with bear HIT after removal of the pumps. These six squirrels then hibernated over four times their previous frequency. Results suggest that bear HIT is not itself an opioid (since naloxone did not reverse bear HIT's depression of electrically-induced contraction of guinea pig ileum). The fact that bear HIT's effect of inducing summer hibernation in ground squirrels is effectively blocked in vivo by naloxone leads to the speculation that HIT may be either a precursor of endogenous opioids or a potent releaser of them, which, in turn, induce hibernation.  相似文献   

12.
Ovary gland cells of Aptenia cordifolia were exposed to 100 micrograms/ml cytochalasin B (cyt B) for 30 or 60 min during the phase of granulocrine polysaccharide secretion. The drug caused a congestion of Golgi vesicles around the dictyosomes, probably resulting from an inhibition of the vesicle migration towards the plasma membrane. The ultrastructural feature of the Golgi apparatus in control and cyt B treated cells was analyzed using stereological methods in order to estimate the mean area of vesicular membrane produced by a single dictyosome during a 30 min period of effective cyt B action. Assuming that the rate of vesicle congestion can be equated with the rate of vesicle production, the 236 dictyosomes found to be present in the non-growing ovary gland cells form 7517 vesicles in total, or approximately 32 vesicles each within a period of 30 min. This corresponds to a membrane turnover rate of 70.4 micrometers/min (this equals approximately 10% of the total plasma membrane area per min), since the mean vesicle surface area was calculated to be 0.281 microns2. The turnover time of a single Golgi cisterna was determinated to be 7.34 min, and the average vesicle life time to be 8.86 min. Discussion focuses upon the way by which the relatively high amount of vesicular membrane material incorporated into the plasmalemma is recycled into the endomembrane system. Since a bulk membrane retrieval in the form of vesicles, as well as a bulk vesicle migration from the ER to the dictyosomes could not be observed, we suggest that a transfer of membrane subunits is involved in the maintenance of membrane equilibrium in the Golgi apparatus.  相似文献   

13.
Summary Dark grown coleoptile segments were floated on solutions of IAA alone and of IAA and the secretion inhibitors cytochalasin and monensin. The secretion inhibitors prevented normal elongation of the tissue segments, the monensin inhibition being virtually complete while cytochalasin gave a 40% reduction over the first six hours with little further further elongation in the following 18 hours. Vesicle production was assessed in outer epidermal cells after 6 hours of IAA-stimulated elongation using the vesicle accumulation method following a cytochalasin-block of vesicle transport. The results were compared with the area of plasma membrane required to enable cell elongation to proceed at the observed rate. The area of vesicle membrane delivered to the cell surface exceeded this requirement to such an extent that at least 65% of the delivered membrane must be recycled back into the cytoplasm. Expressed in terms of the whole cell, the plasma membrane turnover rate was found to be once every 200 minutes. It is concluded that limitation of elongation by secretion inhibitors is more likely to reflect a requirement for the vesicle contents than the vesicle membrane. These results are compared with those obtained from other secretory systems using a similar approach.Abbreviations IAA indole acetic acid - DMSO dimethyl sulphoxide - D dictyosome - ER endoplasmic reticulum - V vesicle  相似文献   

14.
Summer hibernation induced in ground squirrels (Citellus tridecemlineatus) by urine or plasma from hibernating bats (Myotis lucifugus or Eptesicus fuscus). Summer hibernation in the thirteen-lined ground squirrel can be induced by intravenous injection of urine or blood plasma previously isolated from winter hibernating little brown bats (M. lucifugus) or big brown bats (E. fuscus). Urine- and plasma-injected ground squirrels kept at 8 °C hibernated earlier, longer, and deeper (as indicated by core temperature and respiratory rate measurements) than control ground squirrels injected with saline. This successful cross-order induction of hibernation demonstrates that the hibernation-inducing trigger (HIT) may be present in nonrodent mammals.  相似文献   

15.
Seasonal changes in the levels of phospholipids, diglycerides, cholesterol, and total protein in the blood plasma were investigated during hibernation of the long-tailed ground squirrel Spermophilus undulatus. During the winter period, the levels of phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, lysophosphatidylcholine, and sphingomyelin phospholipids (per 1 mg of plasma protein) were increased in both torpid and active ground squirrels by 70–80, 50, 600–700, 70, and 150–200%, respectively; the level of phosphatidylserine did not change in comparison to the summer period. The plasma phospholipid composition differed between hibernating and active summer animals: in winter, the phosphatidylcholine mol % decreased by 20%, phosphatidylinositol and phosphatidylethanolamine increased by 3–4 times, and the phosphatidylserine mol % decreased by 50%, while sphingomyelin and lysophosphatidylcholine did not change in comparison to summer animals. In hibernating ground squirrels, the plasma cholesterol levels increased by two times, the diglyceride content diminished by 60%, and the level of protein (in milligrams per 1 mL plasma) increased by 20%. The simultaneous increase in the levels of cholesterol and total phospholipids, as well as the pronounced specific changes in the levels of individual phospholipids in the blood plasma of hibernating ground squirrels, indicate the involvement of plasma lipoprotein lipids in the molecular mechanisms of adaptation to natural hypobiosis in mammals and a possible role of these mechanisms in systemic reactions to damaging factors.  相似文献   

16.
Mitochondrial DNA (mtDNA) from 71 Columbian ground squirrels (Spermophilus columbianus) collected in 12 locations in western Canada were assayed for restriction-site variation with 10 endonucleases. Five of these endonucleases revealed variant patterns, and the composite genotypes were used to develop a linear transformation series among the mtDNA genotypes. Two of the four clones had a wide distribution, while the remaining two clones were geographically restricted. The mtDNA of Columbian ground squirrels was also compared to two other species of Sciuridae: Richardson's ground squirrels (S. richardsonii) and Arctic ground squirrels (S. parryii). Calculation of divergences from fragment length and restriction-site data indicated that Arctic ground squirrels and Richardson's ground squirrels were more closely related to each other than either was to Columbian ground squirrels. The transformation series among clones within the Columbian ground squirrels was rooted using Richardson's and Arctic ground squirrels as out-groups. From these data, we conclude that the colonization by female founders of Columbian ground squirrel populations occurred after deglaciation along the eastern ranges of the Rocky Mountains, while colonies on the western ranges may have been present before extensive deglaciation occurred, having existed in refugia in northwestern Alberta.  相似文献   

17.
The mechanisms for regulating the rate of respiration and oxidative phosphorylation in liver mitochondria from hibernating ground squirrels were studied. The microviscosity of the mitochondrial membrane in hibernating squirrels was found to be higher than that in active animals. Probably, a high microviscosity of the membrane causes a decreases in the rate of the transport of oxidation substrates into the mitochondrial matrix, which in turn may be one of the main reasons for the inhibition of mitochondrial respiration in hibernating squirrels. The activation of phospholipase A2 in a hypotonic medium results in the acceleration of the respiration and phosphorylation in the mitochondria from hibernating squirrels and is accompanied by the increase of the transport of substrates across the mitochondrial membrane. The inhibition of phospholipase A2 decreases Ca2+--induced acceleration of the transport of substrates and prevents the activation of the respiration and phosphorylation in a hypotonic medium.  相似文献   

18.
Otis JP  Sahoo D  Drover VA  Yen CL  Carey HV 《PloS one》2011,6(12):e29111
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival.  相似文献   

19.
Summary Nutrient requirements of adult, nonreproductive, omnivorous antelope ground squirrels (Ammospermophilus leucurus) were compared with the nutritional value of their food resources. It was found that nutrient constraints would be important factors in ground squirrel feeding ecology primarily in winter. Potentially important constraints were the requirement for water and nitrogen, and a digestive requirement that average dry matter digestibility of the diet exceed ca. 50%. An unlikely constraint was the requirement for any specific mineral. A linear programming model was used to determine potential diets ground squirrels could consume which satisfied these nutritional requirements and also the ground squirrel's daily energy requirements. During spring ground squirrels could be strict herbivores, but during winter before winter rains ground squirrels had to eat some arthropods to satisfy water requirements.These ground squirrels are not energy maximizers because they spend only one third of their activity period feeding and do not accumulate excess energy as fat. Thus, optimum diets were predicted for winter and spring assuming the goal of feeding time minimization. The model correctly predicted that in wintertime ground squirrels would be primarily granivorous but would consume about 20% arthropods, and that they would switch to herbivory in springtime. Ground squirrels, however, selected a wider dietary range than predicted in both winter and spring. Possible reasons for this discrepancy include an inappropriate assumption that ground squirrels forage for food classes nonsimultaneously, and the possibility that ground squirrels employ sampling as part of their foraging behavior.  相似文献   

20.
The delivery of cell wall material and membrane to growing plant cell surfaces requires the spatial and temporal coordination of secretory vesicle trafficking. Given the small size of vesicles, their dynamics is difficult to quantify. To quantitatively analyze vesicle dynamics in growing pollen tubes labeled with the styryl dye FM1-43, we applied spatiotemporal correlation spectroscopy on time-lapse series obtained with high-speed confocal laser scanning microscopy recordings. The resulting vector maps revealed that vesicles migrate toward the apex in the cell cortex and that they accumulate in an annulus-shaped region adjacent to the extreme tip and then turn back to flow rearward in the center of the tube. Fluorescence recovery after photobleaching confirmed vesicle accumulation in the shoulder of the apex, and it revealed that the extreme apex never recovers full fluorescence intensity. This is consistent with endocytotic activity occurring in this region. Fluorescence recovery after photobleaching analysis also allowed us to measure the turnover rate of the apical vesicle population, which was significantly more rapid than the theoretical rate computed based on requirements for new cell wall material. This may indicate that a significant portion of the vesicles delivered to the apex does not succeed in contacting the plasma membrane for delivery of their contents. Therefore, we propose that more than one passage into the apex may be needed for many vesicles before they fuse to the plasma membrane and deliver their contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号