首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Boelens  R. Wever 《BBA》1979,547(2):296-310
Under continuous illumination the CO binding curve of reduced carboxy-cytochrome c oxidase maintains the shape of the binding curve in the dark. The apparent dissociation constant calculated from the binding curves at various light intensities is a linear function of the light intensity.Marked differences are observed between the light-induced difference spectra of the fully reduced carboxy-cytochrome c oxidase and the mixed-valence carboxy-cytochrome c oxidase. These differences are enhanced in the presence of ferricyanide as an electron acceptor and are explained by partial oxidation of cytochrome a3 in the mixed-valence enzyme after photodissociation.Upon addition of CO to partially reduced formate cytochrome c oxidase (a2+a3+3 · HCOOH) the cytochrome a2+3 · CO compound is formed completely with a concomitant oxidation of cytochrome a and the Cu associated with cytochrome a. During photodissociation of the CO compound the formate rebinds to cytochrome a3 and cytochrome a and its associated Cu are simultaneously reduced. These electron transfer processes are fully reversible since in the dark the a3+3 · HCOOH compound is dissociated slowly with a concomitant formation of the a2+3 · CO compound and oxidation of cytochrome a.When these experiments are carried out in the presence of cytochrome c, both cytochrome c and cytochrome a are reduced upon illumination of the mixed-valence carboxy-cytochrome c oxidase. In the dark both cytochrome c and cytochrome a are reoxidized when formate dissociates from cytochrome a3 and the a2+3 · CO compound is formed back. Thus, in this system we are able to reverse and to modulate the redox state of the different components of the final part of the respiratory chain by light.  相似文献   

2.
R. Wever  B. F. Van Gelder 《BBA》1974,368(3):311-317
1. The photodissociation reaction of the cytochrome c oxidase-CO compound in the presence of azide was studied by EPR at 15°K. Addition of CO in the dark to cytochrome c oxidase, partially reduced (2 electrons per 4 metal ions) in the presence of azide brings about a decrease in intensity of the azide-induced low-spin heme signal at g = 2.9, 2.2 and 1.67 and an increase in intensity of both the low-spin heme signal at g = 3 and the copper signal at g = 2. Subsequent illumination with white light at room temperature of this sample causes an enhancement of the azide-induced signal at g = 2.9, and a decrease in intensity of both signals at g = 3 and g = 2. It is shown that these changes in the EPR spectrum are reversible.

2. These results demonstrate that upon photodissociation, CO is replaced by azide wheras upon incubation in the dark CO expels azide from its binding site in cytochrome c oxidase.

3. Concomitantly with the binding of CO and dissociation of the azide molecule, and vice versa, electron redistributions occur as inferred from the changes in the intensity of the copper signal at g = 2.

4. The results are explained in a model of cytochrome c oxidase with either a common binding site (cytochrome a3)* for CO and azide or in a model with anti-cooperative interaction between two different sites of binding.

5. Similar types of experiments with cyanide instead of azide show that cyanide is more firmly bound to partially reduced cytochrome c oxidase than CO and azide. The affinity of ligands for partially reduced enzyme decreases in the sequence: cyanide, CO (dark), azide and CO (illuminated).  相似文献   


3.
1. In the presence of both CO and O2, ox heart cytochrome c oxidase forms a 607 nm-peak intermediate distinct from both the cytochrome a2+a3 2+CO and the cytochrome a3+a3 2+CO ('mixed-valence') CO complexes. 2. This aerobic CO compound is stable towards ferricyanide addition, but decomposed on treatment with ferric cytochrome a2 ligands such as formate, cyanide and azide. 3. Addition of formate or cyanves rise to a complex with alpha-peak at 598 nm, not identical with any azide complex of the free enzyme, but possibly a cytochrome a3 2+NO complex produced by oxidative attack of partially reduced O2 on the azide. 4. The results support the idea that although the initial reaction of oxygen is with cytochrome a3 2+, the next step is not an oxidation of the ferrous cytochrome a3, but a transfer of O2 to a neighbouring group, such as Cu+, to give Cu2+O2- or similar complexes. 5. The aerobic CO complex is then identified as a3+a3 2+COCu2+O2-; a similar compound ('Compound C') is formed by photolysis of a3+a3 2+CO (the 'mixed-valence' CO complex) in the presence of oxygen at low temperatures.  相似文献   

4.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

5.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

6.
1. The photodissociation reaction of the cytochrome c oxidase-CO compound was studied by EPR at 15 °K. Illumination with white light at both room and liquid N2 temperatures of the partially reduced cytochrome c oxidase (2 electrons per 4 metals) in the presence of CO, causes the appearance of a rhombic (gx = 6.60, gy = 5.37) high-spin heme signal.This signal disappears completely upon darkening of the sample and reappears upon illumination at room temperature; accordingly the photolytic process is reversible. Under these conditions, no great changes in the intensities are observed, neither of the copper signal at g = 2, nor of the low-spin heme signal at g = 3, 2.2 and 1.5.2. In the presence of ferricyanide (2 mM) and CO, both the low-spin heme signal (g = 3.0, 2.2 and 1.5) and the copper signal of the partially reduced enzyme have intensities about equal to those of the completely oxidized enzyme in the absence of CO. Upon illumination of the carboxy-cytochrome c oxidase in the presence of ferricyanide, it was found that the rhombic high-spin heme signal appears without affecting appreciably the copper of low-spin heme signals. Thus, in the presence of ferricyanide the EPR-detectable paramagnetism of the illuminated carboxy-cytochrome c oxidase is higher than in the untreated oxidized enzyme.3. The membrane-bound cytochrome c oxidase reduced with NADH in the presence of CO and subsequently oxidized with ferricyanide shows a similar rhombic high-spin heme signal (gx = 6.62, gy = 5.29) upon illumination at room temperature. This signal disappears completely upon darkening and reappears upon illumination at room temperature.  相似文献   

7.
The light-induced difference spectra of the fully reduced (a2+ a23+-CO) complex and the mixed-valence carboxycytochrome c oxidase (a3+ a23+-CO) during steady-state illumination and after flash photolysis showed marked differences. The differences appear to be due to electron transfer between the redox centres in the enzyme. The product of the absorbance coefficient and the quantum yield was found to be equal in both enzyme species, both when determined from the rates of photolysis and from the values of the dissociation constants of the cytochrome a23+-CO complex. This would confirm that the spectral properties of cytochrome a3 are not affected by the redox state of cytochrome a and CuA. When the absorbance changes after photolysis of cytochrome a23+-CO with a laser flash were followed on a time scale from 1 mus to 1 s in the fully reduced carboxycytochrome c oxidase, only the CO recombination reaction was observed. However, in the mixed-valence enzyme an additional fast absorbance change (k = 7 X 10(3) s-1) was detected. The kinetic difference spectrum of this fast change showed a peak at 415 nm and a trough at 445 nm, corresponding to oxidation of cytochrome a3. Concomitantly, a decrease of the 830 nm band was observed due to reduction of CuA. This demonstrates that in the partially reduced enzyme a pathway is present between CuA and the cytochrome a3-CuB pair, via which electrons are transferred rapidly.  相似文献   

8.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

9.
The 607 nm complex of cytochrome c oxidase, formed aerobically in the presence of CO, appears as an intermediate during the oxidation of CO to CO2 by the enzyme. Maximal steady-state formation of this complex requires oxygen, high levels of carbon monoxide, and the presence of an endogenous hydrogen donor system or the addition of small amounts of reductant (both with isolated enzyme and mitochondrial preparations). The 607 nm complex can be formed after removing CO from the mixed-valence CO complex (cytochrome a3+a2(3)+CO) by aerating the presumably CO-free product. The elements of CO are, therefore, probably not part of the 607 nm complex nor of the related "compound C" produced at low temperatures.  相似文献   

10.
At neutral pH, formate binds to the haem a3 component of cytochrome c oxidase to give a complex that reacts differently from the non-liganded enzyme with reducing agents. Addition of sodium dithionite to the formate complex leads directly to the formation of the fully reduced species, whereas reduction with ascorbate/tetramethylenephenylene-diamine can lead to the production of a mixed-valence species. The stability of this mixed-valence form was studied, and the species appears to represent a 'steady-state' situation that is stable only in the presence of an excess of O2 and reducing equivalents. Characterization of the mixed-valence complex by electron paramagnetic resonance and magnetic circular dichroism reveals the presence of reduced low-spin haem a together with reduced detectable copper and high-spin ferric haem a3.  相似文献   

11.
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species. 2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3 + a33+) and in the half-reduced species (a2 + a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high leads to low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both alpha- and Soret regions). 3. The rate of formate dissociation from cytochrome a2+ a33+ -HCOOH is faster than its rate of dissociation from a3+ a33+ -HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 degrees C. 4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2. 5. Formate inhibition of ascorbate plus N, N, N', N'-tetramethyl-p-phenylenediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in 'on' or 'off' inhibition rates were observed when intact mitochondria were compared with submitochondrial particles. 6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

12.
Cytochrome c oxidase isolated from ox heart forms a complex in the presence of millimolar concentrations of CO with absorption bands at 606, 565 and 435 nm (difference spectrum), distinct from both ferrocytochrome a and the classical 590nm carbon-monoxyferrocytochrome a3. This species, which closely resembles Compound C, the derivative formed on photolysis and oxygenation of mixed-valence cytochrome a3+a32+CO, may represent a cytochrome a32+CO complex in which the associated ('invisible') copper is still oxidized.  相似文献   

13.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

14.
Femtosecond spectroscopy was performed on CO-liganded (fully reduced and mixed-valence states) and O(2)-liganded quinol oxidase bd from Escherichia coli. Substantial polarization effects, unprecedented for optical studies of heme proteins, were observed in the CO photodissociation spectra, implying interactions between heme d (the chlorin ligand binding site) and the close-lying heme b(595) on the picosecond time scale; this general result is fully consistent with previous work [Vos, M. H., Borisov, V. B., Liebl, U., Martin, J.-L., and Konstantinov, A. A. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1554-1559]. Analysis of the data obtained under isotropic and anisotropic polarization conditions and additional flash photolysis nanosecond experiments on a mutant of cytochrome bd mostly lacking heme b(595) allow to attribute the features in the well-known but unusual CO dissociation spectrum of cytochrome bd to individual heme d and heme b(595) transitions. This renders it possible to compare the spectra of CO dissociation from reduced and mixed-valence cytochrome bd under static conditions and on a picosecond time scale in much more detail than previously possible. CO binding/dissociation from heme d is shown to perturb ferrous heme b(595), causing induction/loss of an absorption band centered at 435 nm. In addition, the CO photodissociation-induced absorption changes at 50 ps reveal a bathochromic shift of ferrous heme b(595) relative to the static spectrum. No evidence for transient binding of CO to heme b(595) after dissociation from heme d is found in the picosecond time range. The yield of CO photodissociation from heme d on a time scale of < 15 ps is found to be diminished more than 3-fold when heme b(595) is oxidized rather than reduced. In contrast to other known heme proteins, molecular oxygen cannot be photodissociated from the mixed-valence cytochrome bd at all, indicating a unique structural and electronic configuration of the diheme active site in the enzyme.  相似文献   

15.
1. The oxygen kinetics of purified beef heart cytochrome c oxidase were investigated. 2. The effect of addition of various fixed concentrations of the inhibitors CO, HN3, HCOOH, HCN and H2S on the double reciprocal plot of respiration rate against oxygen concentration was studied. 3. CO is strictly competitive, azide and formate are uncompetitive, and cyanide and sulfide are non-competitive inhibitors towards oxygen. 4. Binding constants for the various inhibitors from secondary plots of the oxygen kinetics at pH 7.4 are: CO: Ki = 0.32 micronM, azide: Ki = 33 micronM; formate: Ki = 15 mM; cyanide: Ki = 0.2 micronM and sulfide: Ki = 0.2 micronM. 5. The possible significance of these results in the elucidation of the reaction mechanism is discussed.  相似文献   

16.
The reaction between mixed-valence (MV) cytochrome c oxidase from beef heart with H2O2 was investigated using the flow-flash technique with a high concentration of H2O2 (1 M) to ensure a fast bimolecular interaction with the enzyme. Under anaerobic conditions the reaction exhibits 3 apparent phases. The first phase (tau congruent with 25 micros) results from the binding of one molecule of H2O2 to reduced heme a3 and the formation of an intermediate which is heme a3 oxoferryl (Fe4+=O2-) with reduced CuB (plus water). During the second phase (tau congruent with 90 micros), the electron transfer from CuB+ to the heme oxoferryl takes place, yielding the oxidized form of cytochrome oxidase (heme a3 Fe3+ and CuB2+, plus hydroxide). During the third phase (tau congruent with 4 ms), an additional molecule of H2O2 binds to the oxidized form of the enzyme and forms compound P, similar to the product observed upon the reaction of the mixed-valence (i.e., two-electron reduced) form of the enzyme with dioxygen. Thus, within about 30 ms the reaction of the mixed-valence form of the enzyme with H2O2 yields the same compound P as does the reaction with dioxygen, as indicated by the final absorbance at 436 nm, which is the same in both cases. This experimental approach allows the investigation of the form of cytochrome c oxidase which has the heme a3 oxoferryl intermediate but with reduced CuB. This state of the enzyme cannot be obtained from the reaction with dioxygen and is potentially useful to address questions concerning the role of the redox state in CuB in the proton pumping mechanism.  相似文献   

17.
B Chance  C Saronio    J S Leigh  Jr 《The Biochemical journal》1979,177(3):931-941
Compound C2 is a product of the reaction of O2 and the mixed-valence state of cytochrome oxidase. The mixed-valence state of membrane-bound cytochrome oxidase is obtained at -24 degrees C, by using either ferricyanide or yeast peroxidase complex ES as oxidants, and the configurations of oxidized haem a and its associated copper (a3+Cua2+) and of reduced haem a3 and its associated copper (ac3+.CO.Cua3+) are obtained. The mixed-valence-state cytochrome oxidase mixed with O2 at -24 degrees C and flash-photolysed at -60 to -100 degrees C reacts with O2 and initially forms an oxy compound (A2) similar to that formed from the fully reduced state (A1). Thereafter the course of the reaction differs from that obtained in the fully reduced state, and absorbance increases are observed at 740--750 nm and 609 nm and a decrease at 444 nm, with no increase in absorbance at 655 nm. One possible attribution of the absorbance increases is to charge-transfer interaction between the iron of haem a3 and the copper associated with haem a3, Cua3(2+), having properties of a type-I 'blue' copper. A possible attribution of the decrease in absorbance at 444 nm is to liganding of a3(2+). A related explanation is that the 609 nm absorbance involves a charge-transfer interaction of both iron and copper as a mixed-valence binuclear complex, Cua3, having properties of a non-blue copper. Intermediates in addition to Compound C2 are not yet identifiable by chemical or spectroscopic tests. The kinetic and equilibrium properties of Compound C2 are described.  相似文献   

18.
The effect of CO on the optical absorbance spectrum of partially reduced cytochrome c oxidase has been studied. The changes at 432 and 590 nm suggest that the cytochrome alpha2/3+ - CO compound is formed preferentially and that concomitantly a second electron is taken up by the enzyme. From the CO-induced changes at 830 nm it is concluded that in the partially reduced enzyme addition of CO causes reoxidation of the copper component of cytochrome c oxidase. Addition of CO to partially reduced enzyme (2 electrons per 4 metal ions) also brings about a decrease in the intensities of electron paramagnetic resonance signals of high-spin heme iron near g = 6 and of the low-spin heme at g = 2.6. Concomitantly both the low-spin heme a signal at g = 3 and the copper signal at g = 2 increase in intensity. These results demonstrate that formation of the reduced diamagnetic cytochrome a3 - CO compound is accompanied by reoxidation of both the copper component detectable by electron paramagnetic resonance and possibly also by cytochrome a.  相似文献   

19.
M Oliveberg  B G Malmstr?m 《Biochemistry》1992,31(14):3560-3563
The reactions of the fully reduced, three-electron-reduced, and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, starting from the CO complexes, at 445 and 830 nm at pH 7.4 and 25 degrees C. With the fully reduced and the three-electron-reduced enzyme, four kinetic phases with rate constants in the range from 1 x 10(5) to 10(3) s-1 can be observed. The initial fast phase is associated with an absorbance increase at 830 nm. This is followed by an absorbance decrease (2.8 x 10(4) s-1), the amplitude of which increases with the degree of reduction of the oxidase. The third phase (6 x 10(3) s-1) displays the largest absorbance change at both wavelengths in the fully reduced enzyme and is not seen in the mixed-valence oxidase at 830 nm; a change with opposite sign but with a similar rate constant is found at 445 nm in this enzyme form. The slowest phase (10(3) s-1) is also largest in the fully reduced oxidase and not seen in the mixed-valence enzyme. It is suggested that O2 initially binds to reduced CuB and is then transferred to cytochrome a3 before electron transfer from cytochrome a/CuA takes place. The fast oxidation of cytochrome a seen with the fully reduced enzyme is suggested not to occur during natural turnover. A reaction cycle for the complete turnover of the enzyme is presented. In this cycle, the oxidase oscillates between electron input and output states of the proton pump, characterized by cytochrome a having a high and a low reduction potential, respectively.  相似文献   

20.
1. Mitochondria-enriched fractions of the soil amoeba Acanthamoeba castellanii contained four haemoproteins that in their reduced forms reacted with CO to give photodissociable CO complexes; these were cytochromes a 3, a 614, b- and c-type cytochromes. 2. Non-photodissociable oxygen-containing compounds were formed at temperatures between -130 and -150 degrees C after photodissociation of CO in the presence of 200 microM-O2, 3. Electron transport, indicated by the oxidation of cytochromes a + a3 and cytochrome c, did not occur until the temperature was raised to -80 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号