首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electro enzymatic processes offer novel opportunities in catalysis by combining advantages of enzyme catalysis and electrochemistry. An efficient electrochemical cofactor substitution system can help to overcome economical hurdles for the technical use of cofactor dependent enzymes. The in vitro biocatalysis with P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry as “electron source”. An electrochemical 24-well microtiter plate (eMTP) was developed, which can be employed in a standard microtiter plate reader and enables parallelized electrochemical experiments in combination with simultaneous optical measurements. The eMTP was applied to screen a P450 monooxygenase BM-3 mutein library and determine the behavior of P450 BM-3 muteins in an electrochemically driven surrogate assay with the mediator cobalt sepulchrate. Besides determining reaction rates also the influence of single reaction parameters e.g. applied potential, enzyme and mediator concentration were measured. Additionally the developed eMTP based screening system allows a fast development of an electro enzymatic process.  相似文献   

2.
A J Fulco  R T Ruettinger 《Life sciences》1987,40(18):1769-1775
In a recent publication (Narhi, L.O. and Fulco, A.J.[1986] J. Biol. Chem. 261, 7160-7169) we described the characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 fatty acid monooxygenase (P-450BM-3) induced by barbiturates in Bacillus megaterium ATCC 14581. We have now examined cell-free preparations from 12 distinct strains of B. megaterium and from one or two strains each of B. alvei, B. brevis, B. cereus, B. licheniformis, B. macerans, B. pumilis and B. subtilis for the presence of this inducible enzyme. Using Western blot analyses in combination with assays for fatty acid hydroxylase activity and cytochrome P-450, we were able to show that 11 of the 12 B. megaterium strains contained not only a strongly pentobarbital-inducible fatty acid monooxygenase identical to or polymorphic with P-450BM-3 but also significant levels of two smaller P-450 cytochromes that were the same as or similar to cytochromes P-450BM-1 and P-450BM-2 originally found in ATCC 14581. Unlike the 119,000 Dalton P-450, however, the two smaller P-450s were generally easily detectable in cultures grown to stationary phase in the absence of barbiturates and, with some exceptions, were not strongly induced by pentobarbital. None of the non-megaterium species of Bacillus tested exhibited significant levels of either fatty acid monooxygenase activity or cytochrome P-450. The one strain of B. megaterium that lacked inducible P-450BM-3 was also negative for BM-1 and BM-2. However, this strain (ATCC 13368) did contain a small but significant level of another P-450 cytochrome that others have identified as the oxygenase component of a steroid 15-beta-hydroxylase system. Our evidence suggests that the BM series of P-450 cytochromes is encoded by chromosomal (rather than by plasmid) DNA.  相似文献   

3.
Cytochrome P450 BM-3 monooxygenase from Bacillus megaterium (CYP102A1) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12-22 carbons. Wild-type P450 BM-3 oxidizes saturated fatty acids at subterminal positions producing a mixture of omega-1, omega-2 and omega-3 hydroxylated products. Using a rational site-directed mutagenesis approach, three new elements have been introduced into the substrate binding pocket of the monooxygenase, which greatly changed the product pattern of lauric acid hydroxylation. Particularly, substitutions at positions S72, V78 and I263 had an effect on the enzyme regioselectivity. The P450 BM-3 mutants V78A F87A I263G and S72Y V78A F87A were able to oxidize lauric acid not only at delta-position (14% and 16%, respectively), but also produced gamma- and beta-hydroxylated products. delta-Hydroxy lauric and gamma-hydroxy lauric acid are important synthons for the production of the corresponding lactones.  相似文献   

4.
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.  相似文献   

5.
The substrate oxidation rates of P450(BM-3) are unparalleled in the cytochrome P450 (CYP) superfamily of enzymes. Furthermore, the bacterial enzyme, originating from Bacillus megaterium, has been used repeatedly as a model to study the metabolism of mammalian P450s. A specific example is presented where studying P450(BM-3) substrate dynamics can define important enzyme-substrate characteristics, which may be useful in modeling omega-hydroxylation seen in mammalian P450s. In addition, if the reactive species responsible for metabolism can be controlled to produce specific products this enzyme could be a useful biocatalyst. Based on crystal structures and the fact that the P450(BM-3) F87A mutant produces a large isotope in contrast to the native enzyme, we propose that phenylalanine 87 is responsible for hindering substrate access to the active oxygen species for nonnative substrates. Using kinetic isotopes and two aromatic substrates, p-xylene and 4,4'-dimethylbiphenyl, the role phenylalanine 87 plays in active-site dynamics is characterized. The intrinsic KIE is 7.3 +/- 2 for wtP450(BM-3) metabolism of p-xylene. In addition, stoichiometry differences were measured with the native and mutant enzyme and 4,4'-dimethylbiphenyl. The results show a more highly coupled substrate/NADPH ratio in the mutant than in the wtP450(BM-3).  相似文献   

6.
P450BM-3, a catalytically self-sufficient, soluble bacterial P450, contains on the same polypeptide a heme domain and a reductase domain. P450BM-3 catalyzes the oxidation of short- and long-chain, saturated and unsaturated fatty acids. The three-dimensional structure of the heme domain both in the absence and in the presence of fatty acid substrates has been determined; however, the fatty acid in the substrate-bound form is not adequately close to the heme iron to permit a prediction regarding the stereoselectivity of oxidation. In the case of long-chain fatty acids, the products can also serve as substrate and be metabolized several times. In the current study, we have determined the absolute configuration of the three primary products of palmitic acid hydroxylation (15-, 14-, and 13-OH palmitic acid). While the 15- and 14-hydroxy compounds are produced in a highly stereoselective manner (98% R, 2% S), the 13-hydroxy is a mixture of 72% R and 28% S. We have also examined the binding of these three hydroxy acids to P450BM-3 and shown that only two of them (14-OH and 13-OH palmitic acid) can bind to and be further metabolized by P450BM-3. The results indicate that in contrast to the flexibility of palmitoleic acid bound to the oxidized enzyme, palmitic acid is rigidly bound in the active site during catalytic turnover.  相似文献   

7.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

8.
The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.  相似文献   

9.
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during peroxide-driven P450 catalysis involves methionine oxidation. Although there was no increase in the stability of the P450 under standard reaction conditions (in 10 mM hydrogen peroxide), complete substitution with norleucine resulted in nearly two-fold-increased peroxygenase activity. Thermostability was significantly reduced. The fact that the enzyme can tolerate such extensive amino acid replacement suggests that we can engineer enzymes with unique chemical properties via incorporation of unnatural amino acids while retaining or improving catalytic properties. This system also provides a platform for directing enzyme evolution using an extended set of protein building blocks.  相似文献   

10.
The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11beta-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17alpha-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17alpha-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the "activation" of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11beta-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.  相似文献   

11.
Utilising whole cells of recombinant Escherichia coli K27 (pCYP102, pGEc47) containing active cytochrome P450BM-3 monooxygenase [E.C. 1. 14.14.1], multiple oxidations of saturated and unsaturated fatty acids were performed by the enzyme under conditions of excess oxygen. The amount of oxygen dissolved in the culture medium strongly influenced the regioselectivity of the reaction, as reflected in the distribution and amount of oxidised products. We have verified by gas chromatography/mass spectrometry that the products of in vivo biotransformation of pentadecanoic acid by cytochrome P450BM-3 are identical to those formed in cell-free extracts containing the enzyme. The formation of keto- and dihydroxy acids, side products which are characteristic for in vitro conversions with purified cytochrome P450BM-3 in the presence of excess oxygen, has been observed as well. Thus, by varying the oxygen concentration, we could control the regioselectivity of oxidation and the number of products made. Under oxygen limiting conditions, only monooxidised 12-, 13-, and 14-hydroxy-pentadecanoic acids were obtained. Consequently, unwanted side products could be excluded by modulating the amount of oxygen used in the bioconversion. Furthermore, whole cell oxidation of two unsaturated long-chain fatty acids, cis-pentadec-10-enoic and cis-hexadec-9-enoic acid, resulted in the production of epoxides, various subterminal hydroxyalkenoic acids and keto- and hydroxyalkanoic acids. Although we obtained higher activities of C15:0 conversion in vitro, the whole cell biocatalyst proved to be useful for specific oxidations of long-chain fatty acids since there is no need to add the costly cofactor NADPH. This biooxidation by E. coli K27 (pCYP102, pGEc47) under oxygen limitation has been demonstrated at the 2-L scale, showing that 12-, 13-, and 14-hydroxypentadecanoic acids can be produced in the g L-1 range.  相似文献   

12.
催化吲哚生成靛蓝的细胞色素P450BM-3 定向进化研究   总被引:6,自引:0,他引:6  
以催化吲哚产生的靛蓝在 630 nm 处具有特殊的吸收峰为高通量筛选指标,将来源于 Bacillus megaterium 的细胞色素 P450BM-3 单加氧酶的基因序列用易错聚合酶链式反应进行定向进化,通过多轮突变,在原有的能产靛蓝的高活力突变酶的基础上成功获得了三个高于亲本酶的突变酶,突变酶的酶活分别是亲本酶的 6.6 倍 (hml001) , 9.6 倍 (hml002) 和 5.3 倍 (hml003) ,并对突变酶的动力学参数进行了分析 . 突变酶 DNA 测序的结果表明, hml001 含有一个有义氨基酸置换 I39V , hml002 含有三个有义氨基酸置换 D168N , A225V , K440N , hml003 含有一个有义氨基酸置换 E435D ,这些突变位点有些远离底物结合部位,有些位于底物结合部位 .  相似文献   

13.
In vitro biocatalysis with cytochrome P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry. The monooxygenase was immobilized on electrodes by entrapment in polypyrrole as a conductive polymer for electrochemically wiring the enzyme. Electropolymerization of pyrrole proved to be a useful means of immobilising an active cytochrome P450 BM-3 mutein on platinum and glassy carbon electrodes without denaturation. Repeatedly sweeping the electric potential between −600 and +600 mV versus Ag/AgCl led to enzymatically-catalysed product formation while in the absence of the enzyme no product formed under otherwise identical conditions.  相似文献   

14.
Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation. One of the amino acids identified as playing a key role in the active site of BM-3 is alanine 328, which is located in the loop between the K helix and β 1-4. In the A328V BM-3 mutant, substrate affinity increases 5-10-fold and the turnover number increases 2-8-fold compared to wild-type enzyme. Unlike wild-type enzyme, this mutant is purified from E. coli with endogenous substrate bound due to the higher binding affinity. Close examination of the crystal structures of the substrate-bound native and A328V mutant BMPs indicates that the positioning of the substrate is essentially identical in the two forms of the enzyme, with the two valine methyl groups occupying voids present in the active site of the wild-type substrate-bound structure.  相似文献   

15.
The reactions of cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3) with phenyldiazene result in the formation of phenyl-iron complexes with absorption maxima at 474-478 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 decreases the 474-478 nm absorbance and shifts the phenyl group from the iron to the porphyrin nitrogens. Acidification and extraction of the prosthetic group from each of the ferricyanide-treated enzymes yields a different mixture of the four possible N-phenylprotoporphyrin IX regioisomers. The ratios of the regioisomers with the phenyl ring on pyrrole rings B, A, C, and D (in order of elution from the high performance liquid chromatography column) are, respectively: cytochrome P450cam, 0:0:1:4; P450terp, 0:0:0:1; and P450BM-3, 2:10:2:1. The isomer ratio for recombinant cytochrome P450BM-3 without the cytochrome P450 reductase domain (2:9:2:1) shows that the reductase domain does not detectably perturb the active site topology of cytochrome P450BM-3. Potassium ions modulate the intensity of the spectrum of the phenyl-iron complex of cytochrome P450cam, but do not alter the N-phenyl isomer ratio. Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern. The regioisomer ratios indicate that the active site of cytochrome P450terp is only open above pyrrole ring D, whereas that of cytochrome P450BM-3 is open to some extent above all the pyrrole rings but particularly above pyrrole ring A. The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D.  相似文献   

16.
P450 BM-3是一种具有工业化应用潜力的单加氧酶,可催化饱和脂肪酸羟基化。为提高其在大肠杆菌宿主中的可溶性表达水平,采用乳糖作为诱导剂对P450 BM-3的诱导表达条件进行研究。结果发现:在大肠杆菌的OD600达到0.7~1.5时,添加2.0 g/L的乳糖、30℃诱导10 h可获得最佳诱导效果。与IP TG的诱导效果对比发现:采用乳糖作诱导剂时,菌体生物量提高1.09倍,目标蛋白量提升2.13倍,蛋白包涵体的比例则降低至10%。研究结果表明:乳糖可显著提升P450 BM-3在大肠杆菌中的重组表达水平,并且能够促进p450 BM-3的可溶性表达。  相似文献   

17.
Cytochrome P-450BM-3 (P-450BM-3) from Bacillus megaterium incorporates both a P-450 and an NADPH:P-450 reductase in proteolytically separable domains of a single, 119-kDa polypeptide and functions as a fatty acid monooxygenase independently of any other protein. A 5-kilobase DNA fragment which contains the gene encoding P-450BM-3 was sequenced. A single continuous open reading frame starting at nucleotide 1541 of the 5-kilobase fragment correctly predicted the previously determined NH2-terminal protein sequences of the trypsin-generated P-450 and reductase domains and, in toto, predicted a mature polypeptide of 1,048-amino acid residues with Mr = 117,641. The trypsin site was found at arginine residue 471. The P-450 domain is most similar (about 25%) to the fatty acid omega-hydroxylases of P-450 family IV, while the reductase domain exhibits some 33% sequence similarity with the NADPH:P-450 reductases of mammalian liver. Both the P-450 and reductase domains of P-450BM-3 define new gene families but contain highly conserved segments which display as much as 50% sequence similarity with P-450s and reductases of eukaryotic origin. The mRNA for P-450BM-3 was found by S1 mapping to be 3,339 +/- 10 nucleotides in length. In the accompanying paper, two regions in the 1.5 kilobases 5' to the P-450BM-3 coding region have been implicated in the regulation of P-450BM-3 gene expression.  相似文献   

18.
Quorum sensing is the process by which bacteria alter gene regulation in response to their population density. The enzymatic inactivation of quorum signals has shown promise for use in genetically modified organisms resistant to pathogens. We recently characterized the ability of a cytochrome P450, P450BM-3, to oxidize the quorum sensing signals known as acyl homoserine lactones. The oxidation of the acyl homoserine lactones reduced their activity as quorum signals. The enzyme also oxidized the inactive lactonolysis products, acyl homoserines. The enzyme showed similar binding affinity for the acyl homoserine lactones and acyl homoserines. The latter reaction may lead to problems when lactonases and the P450-dependent system are used in tandem, as oxidation of the acyl homoserines produced by lactonolysis in vivo may compete with acyl homoserine lactone oxidation by the cytochrome P450. We report here that a single mutation (R47S) in P450BM-3 is capable of increasing the acyl homoserine lactone: acyl homoserine substrate binding selectivity of the enzyme nearly 250-fold, reducing the potential for competition by acyl homoserines and significantly enhancing the potential for use of P450BM-3 as part of a pathogen resistance system in genetically modified crops.  相似文献   

19.
The use of cytochrome P450 (P450 or CYP) enzymes as biocatalysts for the production of fine chemicals, including pharmaceuticals, has been of increasing interest, primarily owing to their catalytic diversity and broad substrate range. CYP102A1 (P450 BM3) from Bacillus megaterium integrates an entire monooxygenase system into one polypeptide and represents an appropriate prokaryotic model for industrial applications of mammalian P450 activities. CYP102A1 not only exhibits the highest catalytic activity ever detected in a P450 monooxygenase but also provides a potentially versatile biocatalyst for the production of human P450 metabolites. CYP102A1 can be further engineered to be a drug-metabolizing enzyme, making it a promising candidate to use as a biocatalyst in drug discovery and synthesis.  相似文献   

20.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号